Welcome 微信登录

首页 / 数据库 / MySQL / MySQL基于时间字段进行分区的方案总结

MySQL支持的分区类型一共有四种:RANGE,LIST,HASH,KEY。其中,RANGE又可分为原生RANGE和RANGE COLUMNS,LIST分为原生LIST和LIST COLUMNS,HASH分为原生HASH和LINEAR HASH,KEY包含原生KEY和LINEAR HASH。关于这些分区之间的差别,改日另写文章进行阐述。最近,碰到一个需求,要对表的时间字段(类型:datetime)基于天进行分区。于是遍历MySQL官方文档分区章节,总结如下:实现方式主要是以下几种:1. 基于RANGE2. 基于RANGE COLUMNS3. 基于HASH测试数据 为了测试以上三种方案,特构造了100万的测试数据,放在test表中,test表只有两列:id和hiredate,其中hiredate只包含10天的数据,从2015-12-01到2015-12-10。具体信息如下:mysql> show create table testG*************************** 1. row *************************** Table: testCreate Table: CREATE TABLE `test` (`id` int(11) DEFAULT NULL,`hiredate` datetime DEFAULT NULL) ENGINE=InnoDB DEFAULT CHARSET=latin11 row in set (0.00 sec)mysql> select min(hiredate),max(hiredate) from test;+---------------------+---------------------+| min(hiredate) | max(hiredate) |+---------------------+---------------------+| 2015-12-01 00:00:00 | 2015-12-10 23:59:56 |+---------------------+---------------------+1 row in set (0.44 sec)mysql> select date(hiredate),count(*) from test group by date(hiredate);+----------------+----------+| date(hiredate) | count(*) |+----------------+----------+| 2015-12-01 |99963 || 2015-12-02 | 100032 || 2015-12-03 | 100150 || 2015-12-04 |99989 || 2015-12-05 |99908 || 2015-12-06 |99897 || 2015-12-07 | 100137 || 2015-12-08 | 100171 || 2015-12-09 |99851 || 2015-12-10 |99902 |+----------------+----------+10 rows in set (0.98 sec) 测试的维度测试的维度主要从两个方面进行,一、分区剪裁针对特定的查询,是否能进行分区剪裁(即只查询相关的分区,而不是所有分区)二、查询时间鉴于该批测试数据是静止的(即没有并发进行的insert,update和delete操作),数据量也不太大,从这个维度来考量貌似意义也不是很大。因此,重点测试第一个维度。基于RANGE的分区方案在这里,选用了TO_DAYS函数CREATE TABLE range_datetime(id INT,hiredate DATETIME)PARTITION BY RANGE (TO_DAYS(hiredate) ) (PARTITION p1 VALUES LESS THAN ( TO_DAYS("20151202") ),PARTITION p2 VALUES LESS THAN ( TO_DAYS("20151203") ),PARTITION p3 VALUES LESS THAN ( TO_DAYS("20151204") ),PARTITION p4 VALUES LESS THAN ( TO_DAYS("20151205") ),PARTITION p5 VALUES LESS THAN ( TO_DAYS("20151206") ),PARTITION p6 VALUES LESS THAN ( TO_DAYS("20151207") ),PARTITION p7 VALUES LESS THAN ( TO_DAYS("20151208") ),PARTITION p8 VALUES LESS THAN ( TO_DAYS("20151209") ),PARTITION p9 VALUES LESS THAN ( TO_DAYS("20151210") ),PARTITION p10 VALUES LESS THAN ( TO_DAYS("20151211") ));插入数据并查看特定查询的执行计划mysql> insert into range_datetime select * from test;Query OK, 1000000 rows affected (8.15 sec)Records: 1000000Duplicates: 0Warnings: 0mysql> explain partitions select * from range_datetime where hiredate >= "20151207124503" and hiredate<="20151210111230"; +----+-------------+----------------+--------------+------+---------------+------+---------+------+--------+-------------+| id | select_type | table| partitions | type | possible_keys | key| key_len | ref| rows | Extra |+----+-------------+----------------+--------------+------+---------------+------+---------+------+--------+-------------+|1 | SIMPLE| range_datetime | p7,p8,p9,p10 | ALL| NULL| NULL | NULL| NULL | 400061 | Using where |+----+-------------+----------------+--------------+------+---------------+------+---------+------+--------+-------------+1 row in set (0.03 sec)注意执行计划中的partitions的内容,只查询了p7,p8,p9,p10三个分区,由此来看,使用to_days函数确实可以实现分区裁剪。基于RANGE COLUMNS的分区方案RANGE COLUMNS可以直接基于列,而无需像上述RANGE那种,分区的对象只能为整数。创表语句如下:CREATE TABLE range_columns ( id INT,hiredate DATETIME)PARTITION BY RANGE COLUMNS(hiredate) (PARTITION p1 VALUES LESS THAN ( "20151202" ),PARTITION p2 VALUES LESS THAN ( "20151203" ),PARTITION p3 VALUES LESS THAN ( "20151204" ),PARTITION p4 VALUES LESS THAN ( "20151205" ),PARTITION p5 VALUES LESS THAN ( "20151206" ),PARTITION p6 VALUES LESS THAN ( "20151207" ),PARTITION p7 VALUES LESS THAN ( "20151208" ),PARTITION p8 VALUES LESS THAN ( "20151209" ),PARTITION p9 VALUES LESS THAN ( "20151210" ),PARTITION p10 VALUES LESS THAN ("20151211" ));插入数据并查看上述查询的执行计划mysql> insert into range_columns select * from test;Query OK, 1000000 rows affected (9.20 sec)Records: 1000000Duplicates: 0Warnings: 0mysql> explain partitions select * from range_columns where hiredate >= "20151207124503" and hiredate<="20151210111230"; +----+-------------+---------------+--------------+------+---------------+------+---------+------+--------+-------------+| id | select_type | table | partitions | type | possible_keys | key| key_len | ref| rows | Extra |+----+-------------+---------------+--------------+------+---------------+------+---------+------+--------+-------------+|1 | SIMPLE| range_columns | p7,p8,p9,p10 | ALL| NULL| NULL | NULL| NULL | 400210 | Using where |+----+-------------+---------------+--------------+------+---------------+------+---------+------+--------+-------------+1 row in set (0.11 sec)同样,使用该分区方案也实现了分区剪裁。基于HASH的分区方案因HASH分区对象同样只能为整数,所以我们无法像上述RANGE COLUMNS那种直接引用列,在这里,同样用了TO_DAYS函数进行转换。创表语句如下:CREATE TABLE hash_datetime ( id INT, hiredate DATETIME)PARTITION BY HASH( TO_DAYS(hiredate) )PARTITIONS 10;插入数据并查看上述查询的执行计划mysql> insert into hash_datetime select * from test;Query OK, 1000000 rows affected (9.43 sec)Records: 1000000Duplicates: 0Warnings: 0mysql> explain partitions select * from hash_datetime where hiredate >= "20151207124503" and hiredate<="20151210111230";+----+-------------+---------------+-------------------------------+------+---------------+------+---------+------+---------+-------------+| id | select_type | table | partitions| type | possible_keys | key| key_len | ref| rows| Extra |+----+-------------+---------------+-------------------------------+------+---------------+------+---------+------+---------+-------------+|1 | SIMPLE| hash_datetime | p0,p1,p2,p3,p4,p5,p6,p7,p8,p9 | ALL| NULL| NULL | NULL| NULL | 1000500 | Using where |+----+-------------+---------------+-------------------------------+------+---------------+------+---------+------+---------+-------------+1 row in set (0.00 sec)不难看出,使用hash分区并不能有效的实现分区裁剪,至少在本例,基于天的需求中如此。以上三种方案都是基于datetime的,那么,对于timestamp类型,又该如何选择呢?事实上,MySQL提供了一种基于UNIX_TIMESTAMP函数的RANGE分区方案,而且,只能使用UNIX_TIMESTAMP函数,如果使用其它函数,譬如to_days,会报如下错误:“ERROR 1486 (HY000): Constant, random or timezone-dependent expressions in (sub)partitioning function are not allowed”。而且官方文档中也提到“Any other expressions involving TIMESTAMP values are not permitted. (See Bug #42849.)”。下面来测试一下基于UNIX_TIMESTAMP函数的RANGE分区方案,看其能否实现分区裁剪。针对TIMESTAMP的分区方案创表语句如下:CREATE TABLE range_timestamp (id INT,hiredate TIMESTAMP)PARTITION BY RANGE ( UNIX_TIMESTAMP(hiredate) ) (PARTITION p1 VALUES LESS THAN ( UNIX_TIMESTAMP("2015-12-02 00:00:00") ),PARTITION p2 VALUES LESS THAN ( UNIX_TIMESTAMP("2015-12-03 00:00:00") ),PARTITION p3 VALUES LESS THAN ( UNIX_TIMESTAMP("2015-12-04 00:00:00") ),PARTITION p4 VALUES LESS THAN ( UNIX_TIMESTAMP("2015-12-05 00:00:00") ),PARTITION p5 VALUES LESS THAN ( UNIX_TIMESTAMP("2015-12-06 00:00:00") ),PARTITION p6 VALUES LESS THAN ( UNIX_TIMESTAMP("2015-12-07 00:00:00") ),PARTITION p7 VALUES LESS THAN ( UNIX_TIMESTAMP("2015-12-08 00:00:00") ),PARTITION p8 VALUES LESS THAN ( UNIX_TIMESTAMP("2015-12-09 00:00:00") ),PARTITION p9 VALUES LESS THAN ( UNIX_TIMESTAMP("2015-12-10 00:00:00") ),PARTITION p10 VALUES LESS THAN (UNIX_TIMESTAMP("2015-12-11 00:00:00") ));插入数据并查看上述查询的执行计划mysql> insert into range_timestamp select * from test;Query OK, 1000000 rows affected (13.25 sec)Records: 1000000Duplicates: 0Warnings: 0mysql> explain partitions select * from range_timestamp where hiredate >= "20151207124503" and hiredate<="20151210111230";+----+-------------+-----------------+--------------+------+---------------+------+---------+------+--------+-------------+| id | select_type | table | partitions | type | possible_keys | key| key_len | ref| rows | Extra |+----+-------------+-----------------+--------------+------+---------------+------+---------+------+--------+-------------+|1 | SIMPLE| range_timestamp | p7,p8,p9,p10 | ALL| NULL| NULL | NULL| NULL | 400448 | Using where |+----+-------------+-----------------+--------------+------+---------------+------+---------+------+--------+-------------+1 row in set (0.00 sec)同样也能实现分区裁剪。总结:1. 经过对比,个人倾向于第二种方案,即基于RANGE COLUMNS的分区实现。2. 在5.7版本之前,对于DATA和DATETIME类型的列,如果要实现分区裁剪,只能使用YEAR() 和TO_DAYS()函数,在5.7版本中,又新增了TO_SECONDS()函数。3. 其实LIST也能实现基于天的分区方案,但在这个需求上,相比于RANGE,还是显得很鸡肋。4. TIMESTAMP类型的列,只能基于UNIX_TIMESTAMP函数进行分区,切记!参考:http://dev.mysql.com/doc/refman/5.7/en/partitioning.html 本文永久更新链接地址