1.获得当前trace文件生成路径SQL>
select tracefile from v$process where addr in (select paddr from v$session where sid in (select sid from v$mystat));TRACEFILE
-------------------------------------------------------------------------------------------------------------------------------
f:Oracleadministratordiag
dbmsorclorcl raceorcl_ora_1160.trc 2.开启当前session的traceSQL> alter session set sql_trace=true;SQL> select count(*) from t1;
3.转换trc文件内容为可读的输出结果 C:Documents and SettingsAdministrator>tkprof f:oracleadministratordiag
dbm
sorclorcl raceorcl_ora_1160.trc output=c:aa.txt
TKPROF: Release 11.2.0.1.0 - Development on 星期六 10月 6 23:51:07 2012
Copyright (c) 1982, 2009, Oracle and/or its affiliates. All rights reserved.
4.打开c:aa.txt, 就会看到关于SQL语句 ‘ select count(*) from t1;’ 的执行计划- ********************************************************************************
- SQL ID: 5bc0v4my7dvr5
- Plan Hash: 3724264953
- select count(*)
- from
- t1
-
-
- call count cpu elapsed disk query current rows
- ------- ------ -------- ---------- ---------- ---------- ---------- ----------
- Parse 1 0.00 0.04 0 1 0 0
- Execute 1 0.00 0.00 0 0 0 0
- Fetch 2 0.03 0.01 0 1070 0 1
- ------- ------ -------- ---------- ---------- ---------- ---------- ----------
- total 4 0.03 0.06 0 1071 0 1
-
- Misses in library cache during parse: 1
- Optimizer mode: ALL_ROWS
- Parsing user id: 91
-
- Rows Row Source Operation
- ------- ---------------------------------------------------
- 1 SORT AGGREGATE (cr=1070 pr=0 pw=0 time=0 us)
- 72597 TABLE ACCESS FULL T1 (cr=1070 pr=0 pw=0 time=172543 us cost=298 size=0 card=66014)
-
- ********************************************************************************
安全初始化MySQL服务器MySQL错误:using expire_logs_days without log_bin crashes the server. seereadme.debian.gz相关资讯 Oracle数据库 Oracle trace文件 Oracle trace文件分析 trace文件
- Oracle数据库全球化 (03月01日)
- Oracle数据库日期过滤方法性能比较 (02/02/2015 13:20:26)
- Oracle数据库安装中端口被占用问题 (10/29/2014 07:42:24)
| - 在CentOS 6.6上搭建C++运行环境并 (10/10/2015 19:44:40)
- Oracle数据库无法使用localhost和 (11/14/2014 16:39:10)
- Oracle 多数据库的数据同时更新 (06/16/2014 21:52:23)
|
本文评论 查看全部评论 (0)