将nginx日志导入到hive中的两种方法 1 在hive中建表
- CREATE TABLE apachelog (ipaddress STRING, identd STRING, user STRING,finishtime STRING,requestline string, returncode INT, size INT,referer string,agent string) ROW FORMAT SERDE "org.apache.Hadoop.hive.serde2.dynamic_type.DynamicSerDe"WITH SERDEPROPERTIES ("serialization.format"="org.apache.hadoop.hive.serde2.thrift.TCTLSeparatedProtocol","quote.delim"="("|\[|\])","field.delim"=" ","serialization.null.format"="-")STORED AS TEXTFILE;
导入后日志格式为 203.208.60.91 - - 05/May/2011:01:18:47 +0800 GET /robots.txt HTTP/1.1 404 1238 Mozilla/5.0 此方法支持hive中函数parse_url(referer,"HOST")第二种方法导入 注意:这个方法在建表后,使用查询语句等前要先执行hive> add jar /home/hjl/hive/lib/hive_contrib.jar;或者设置hive/conf/hive-default.conf 添加<property>
<name>hive.aux.jars.path</name>
<value>file:///usr/local/hadoop/hive/lib/hive-contrib-0.7.0-cdh3u0.jar</value>
</property>保存配置
- CREATE TABLE apilog20110505 (ipaddress STRING,identity STRING,user STRING,time STRING,request STRING,protocol STRING,status STRING,size STRING,referer STRING,agent STRING) ROW FORMAT SERDE "org.apache.hadoop.hive.contrib.serde2.RegexSerDe" WITH SERDEPROPERTIES ("input.regex" = "([^ ]*) ([^ ]*) ([^ ]*) (-|\[[^\]]*\]) ([^ "]*|"[^"]*) ([^ ]*") (-|[0-9]*) (-|[0-9]*)(?: ([^ "]*|".*") ([^ "]*|".*"))?","output.format.string" = "%1$s %2$s %3$s %4$s %5$s %6$s %7$s %8$s %9$s %10$s")STORED AS TEXTFILE;
203.208.60.91 - - [05/May/2011:01:18:47 +0800] "GET /robots.txt HTTP/1.1" 404 1238 "-" "Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)" 此方法中的字段类型string from deserializer 经测试不支持parse_url(referer,"HOST")获取域名可以用select split(referer,"/")[2] from apilog 获取域名如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCE 。导入日志命令hive>load data local inpath "/home/log/map.gz" overwrite into table log; 导入日志支持.gz等格式 导入日志后进行分析 例句统计行数
select count(*) from nginxlog;
统计IP数
select count(DISTINCT ip) from nginxlog;
排行
select t2.ip,t2.xx from (SELECT ip, COUNT(*) AS xx FROM nginxlog GROUP by ip) t2 sort by t2.xx desc
hive>
SELECT * from apachelog WHERE ipaddress = "216.211.123.184"; hive> SELECT ipaddress, COUNT(1) AS numrequest FROM apachelog GROUP BY ipaddress SORT BY numrequest DESC LIMIT 1;hive> set mapred.reduce.tasks=2;
hive> SELECT ipaddress, COUNT(1) AS numrequest FROM apachelog GROUP BY ipaddress SORT BY numrequest DESC LIMIT 1;hive>CREATE TABLE ipsummary (ipaddress STRING, numrequest INT);
hive>INSERT OVERWRITE TABLE ipsummary SELECT ipaddress, COUNT(1) FROM apachelog GROUP BY ipaddress;hive>SELECT ipsummary.ipaddress, ipsummary.numrequest FROM (SELECT MAX(numrequest) AS themax FROM ipsummary) ipsummarymax JOIN ipsummary ON ipsummarymax.themax = ipsummary.numrequest;hive查询结果导出为csv的方法(未测试)hive> set hive.io.output.fileformat=CSVTextFile;
hive> insert overwrite local directory "/tmp/CSVrepos/" select * from S where ... ;PHP连接Hive执行sql查询Hadoop数据迁入到Hive相关资讯 Apache Nginx Hive
- Hive 简明教程 PDF (今 09:40)
- Apache Hive v2.1.0-rc1 发布下载 (06月04日)
- 在 Apache Hive 中轻松生存的12个 (04月07日)
| - Apache Hive v2.1.0 发布下载 (06月22日)
- SparkSQL读取Hive中的数据 (05月20日)
- Apache Hive 2.0.0 发布下载,数据 (02月17日)
|
本文评论 查看全部评论 (0)