MongoDB中的MapReduce其实更类似关系型数据库中的GroupBy 。刚做了下这样试验,对于大数据量的GroupBy(MapReduce)还是比较理想的,生成100W条3位随机字符串
- for (var i=0; i<1000000; i++)
- {
- var x = "0123456789";
- var tmp="";
- for (var j=0; j<3; j++)
- {
- tmp += x.charAt(Math.ceil(Math.random()*100000000)%x.length);|
- }
- var u = {_id:i,v1:tmp};
- db.RandomNum.insert(u);
- }
然后进行对相同的随机数取Count数 所以必须GroupBy
- var m = function(){emit(this.v1,{count:1}); }; //map key类似关系型数据的group by 第二个是value 就是要进行聚合的字段(sum...)
-
- var r = function (key,values) { var total = 0;for (var i=0; i<values.length; i++) { total += values[i].count; } return {count : total}; };. //reduce
-
- var res = db.RandomNum.mapReduce(m, r, {out:{replace:"Result"}});
-
- db[res.result].find()
测试了下时间:
- var startTime = new Date();
-
- var m = function(){emit(this.v1,{count:1}); };
-
- var r = function (key,values) { var total = 0;for (var i=0; i<values.length; i++) { total += values[i].count; } return {count : total}; };
-
- var res = db.RandomNum.mapReduce(m, r, {out:{replace:"Result"}});
-
- db[res.result].find()
-
- (new Date().getTime()-startTime.getTime())/1000
结果如下:
- > db[res.result].find()
- { "_id" : "000", "value" : { "count" : 1075 } }
- { "_id" : "001", "value" : { "count" : 1045 } }
- { "_id" : "002", "value" : { "count" : 1022 } }
- { "_id" : "003", "value" : { "count" : 968 } }
- { "_id" : "004", "value" : { "count" : 994 } }
- { "_id" : "005", "value" : { "count" : 1009 } }
- { "_id" : "006", "value" : { "count" : 948 } }
- { "_id" : "007", "value" : { "count" : 1003 } }
- { "_id" : "008", "value" : { "count" : 983 } }
- { "_id" : "009", "value" : { "count" : 993 } }
- { "_id" : "010", "value" : { "count" : 987 } }
- { "_id" : "011", "value" : { "count" : 982 } }
- { "_id" : "012", "value" : { "count" : 957 } }
- { "_id" : "013", "value" : { "count" : 1031 } }
- { "_id" : "014", "value" : { "count" : 971 } }
- { "_id" : "015", "value" : { "count" : 1053 } }
- { "_id" : "016", "value" : { "count" : 974 } }
- { "_id" : "017", "value" : { "count" : 975 } }
- { "_id" : "018", "value" : { "count" : 978 } }
- { "_id" : "019", "value" : { "count" : 1010 } }
- has more
- >
- > (new Date().getTime()-startTime.getTime())/1000
- 63.335s
- > bye
测试机的性能:
MongoDB高级---->复制与分片MongoDB中级---->MongoDB权限相关资讯 MongoDB
- MongoDB 3.3.0 发布下载 (01月14日)
- 使用MongoDB C#官方驱动操作 (12/31/2015 16:27:56)
- CentOS 6.6下安装MongoDB 3.0.1 (12/21/2015 19:29:02)
| - MongoDB 3.2版WiredTiger存储引擎 (01月02日)
- 进程监控工具Supervisor 启动 (12/26/2015 10:49:57)
- MongoDB 3.2.1 RC0 发布下载 (12/18/2015 11:32:29)
|
本文评论 查看全部评论 (0)