C++实现树形选择排序 (tree selection sort)2015-10-12算法逻辑: 根据节点的大小, 建立树, 输出树的根节点, 并把此重置为最大值, 再重构树.因为树中保留了一些比较的逻辑, 所以减少了比较次数.也称锦标赛排序, 时间复杂度为O(nlogn), 因为每个值(共n个)需要进行树的深度(logn)次比较.参考<数据结构>(严蔚敏版) 第278-279页.树形选择排序(tree selection sort)是堆排序的一个过渡, 并不是核心算法.但是完全按照书上算法, 实现起来极其麻烦, 几乎没有任何人实现过.需要记录建树的顺序, 在重构时, 才能减少比较.本着娱乐和分享的精神, 应人之邀, 简单的实现了一下.代码:
/** TreeSelectionSort.cpp**Created on: 2014.6.11*Author: Spike*/ /*eclipse cdt,gcc 4.8.1*/ #include <iostream>#include <vector>#include <stack>#include <queue>#include <utility>#include <climits> using namespace std; /*树的结构*/struct BinaryTreeNode{bool from; //判断来源, 左true, 右falseint m_nValue;BinaryTreeNode* m_pLeft;BinaryTreeNode* m_pRight;}; /*构建叶子节点*/BinaryTreeNode* buildList (const std::vector<int>& L){BinaryTreeNode* btnList = new BinaryTreeNode[L.size()]; for (std::size_t i=0; i<L.size(); ++i){btnList[i].from = true;btnList[i].m_nValue = L[i];btnList[i].m_pLeft = NULL;btnList[i].m_pRight = NULL;} return btnList;} /*不足偶数时, 需补充节点*//**/BinaryTreeNode* addMaxNode (BinaryTreeNode* list, int n){/*最大节点*/BinaryTreeNode* maxNode = new BinaryTreeNode(); //最大节点, 用于填充maxNode->from = true;maxNode->m_nValue = INT_MAX;maxNode->m_pLeft = NULL;maxNode->m_pRight = NULL; /*复制数组*/BinaryTreeNode* childNodes = new BinaryTreeNode[n+1]; //增加一个节点for (int i=0; i<n; ++i) {childNodes[i].from = list[i].from;childNodes[i].m_nValue = list[i].m_nValue;childNodes[i].m_pLeft = list[i].m_pLeft;childNodes[i].m_pRight = list[i].m_pRight;}childNodes[n] = *maxNode;delete[] list;list = NULL; return childNodes;} /*根据左右子树大小, 创建树*/BinaryTreeNode* buildTree (BinaryTreeNode* childNodes, int n){if (n == 1) {return childNodes;} if (n%2 == 1) {childNodes = addMaxNode(childNodes, n);}int num = n/2 + n%2;BinaryTreeNode* btnList = new BinaryTreeNode[num];for (int i=0; i<num; ++i) {btnList[i].m_pLeft = &childNodes[2*i];btnList[i].m_pRight = &childNodes[2*i+1];bool less = btnList[i].m_pLeft->m_nValue <= btnList[i].m_pRight->m_nValue;btnList[i].from = less;btnList[i].m_nValue = less ?btnList[i].m_pLeft->m_nValue : btnList[i].m_pRight->m_nValue;} buildTree(btnList, num); } /*返回树根, 重新计算数*/int rebuildTree (BinaryTreeNode* tree){int result = tree[0].m_nValue; std::stack<BinaryTreeNode*> nodes;BinaryTreeNode* node = &tree[0];nodes.push(node); while (node->m_pLeft != NULL) {node = node->from ? node->m_pLeft : node->m_pRight;nodes.push(node);} node->m_nValue = INT_MAX;nodes.pop(); while (!nodes.empty()){node = nodes.top();nodes.pop();bool less = node->m_pLeft->m_nValue <= node->m_pRight->m_nValue;node->from = less;node->m_nValue = less ?node->m_pLeft->m_nValue : node->m_pRight->m_nValue;} return result;} /*从上到下打印树*/void printTree (BinaryTreeNode* tree) { BinaryTreeNode* node = &tree[0];std::queue<BinaryTreeNode*> temp1;std::queue<BinaryTreeNode*> temp2; temp1.push(node); while (!temp1.empty()){node = temp1.front();if (node->m_pLeft != NULL && node->m_pRight != NULL) {temp2.push(node->m_pLeft);temp2.push(node->m_pRight);} temp1.pop(); if (node->m_nValue == INT_MAX) {std::cout << "MAX"<< " ";} else {std::cout << node->m_nValue<< " ";} if (temp1.empty()){std::cout << std::endl;temp1 = temp2;std::queue<BinaryTreeNode*> empty;std::swap(temp2, empty);}}} int main (){std::vector<int> L = {49, 38, 65, 97, 76, 13, 27, 49};BinaryTreeNode* tree = buildTree(buildList(L), L.size()); std::cout << "Begin : " << std::endl;printTree(tree); std::cout << std::endl; std::vector<int> result;for (std::size_t i=0; i<L.size(); ++i){int value = rebuildTree (tree);std::cout << "Round[" << i+1 << "] : " << std::endl;printTree(tree); std::cout << std::endl;result.push_back(value);} std::cout << "result : ";for (std::size_t i=0; i<L.size(); ++i) {std::cout << result[i] << " ";}std::cout << std::endl; return 0;}
输出:
Begin : 13 38 13 38 65 13 27 49 38 65 97 76 13 27 49Round[1] : 27 38 27 38 65 76 27 49 38 65 97 76 MAX 27 49Round[2] : 38 38 49 38 65 76 49 49 38 65 97 76 MAX MAX 49Round[3] : 49 49 49 49 65 76 49 49 MAX 65 97 76 MAX MAX 49Round[4] : 49 65 49 MAX 65 76 49 MAX MAX 65 97 76 MAX MAX 49Round[5] : 65 65 76 MAX 65 76 MAX MAX MAX 65 97 76 MAX MAX MAXRound[6] : 76 97 76 MAX 97 76 MAX MAX MAX MAX 97 76 MAX MAX MAXRound[7] : 97 97 MAX MAX 97 MAX MAX MAX MAX MAX 97 MAX MAX MAX MAXRound[8] : MAX MAX MAX MAX MAX MAX MAX MAX MAX MAX MAX MAX MAX MAX MAXresult : 13 27 38 49 49 65 76 97
作者:csdn博客 Caroline-Wendy