Welcome

首页 / 软件开发 / 数据结构与算法 / 机器学习算法的python实现之扫黄神器-朴素贝叶斯分类器的实现

机器学习算法的python实现之扫黄神器-朴素贝叶斯分类器的实现2015-10-081.背景

以前我在外面公司实习的时候,一个大神跟我说过,学计算机就是要一个一个贝叶斯公式的套用来套用去。嗯,现在终于用到了。朴素贝叶斯分类器据说是好多扫黄软件使用的算法,贝叶斯公式也比较简单,大学做概率题经常会用到。核心思想就是找出特征值对结果影响概率最大的项。公式如下:

什么是朴素贝叶斯,就是特征值相互独立互不影响的情况。贝叶斯可以有很多变形,这里先搞一个简单的,以后遇到复杂的再写。

2.数据集

摘自机器学习实战。

[["my","dog","has","flea","problems","help","please"],    0

["maybe","not","take","him","to","dog","park","stupid"],  1

["my","dalmation","is","so","cute","I","love","him"],          0

["stop","posting","stupid","worthless","garbage"],          1

["mr","licks","ate","my","steak","how","to","stop","him"],  0

["quit","buying","worthless","dog","food","stupid"]]           1

以上是六句话,标记是0句子的表示粗口句,标记是1句子的表示为粗口。我们通过分析每个句子中的每个词,在粗口句或是正常句出现的概率,可以找出那些词是粗口。

3.代码

#以矩阵形式创建数据集def loadDataSet():postingList=[["my", "dog", "has", "flea", "problems", "help", "please"], ["maybe", "not", "take", "him", "to", "dog", "park", "stupid"], ["my", "dalmation", "is", "so", "cute", "I", "love", "him"], ["stop", "posting", "stupid", "worthless", "garbage"], ["mr", "licks", "ate", "my", "steak", "how", "to", "stop", "him"], ["quit", "buying", "worthless", "dog", "food", "stupid"]]classVec = [0,1,0,1,0,1]#1 is abusive, 0 not return postingList,classVec

#将矩阵内容添加到列表,set获取list中不重复的元素def createVocabList(dataSet):vocabSet = set([])#create empty setfor document in dataSet:vocabSet = vocabSet | set(document) #union of the two setsreturn list(vocabSet)
#判断list中每个词在总共词语list中的位置def setOfWords2Vec(vocabList, inputSet):returnVec = [0]*len(vocabList)for word in inputSet:if word in vocabList:returnVec[vocabList.index(word)] = 1else: print "the word: %s is not in my Vocabulary!" % wordreturn returnVec
def trainNB0(trainMatrix,trainCategory):numTrainDocs = len(trainMatrix)numWords = len(trainMatrix[0])pAbusive = sum(trainCategory)/float(numTrainDocs)#脏句的比例 p0Num = zeros(numWords); p1Num = zeros(numWords) #zero是numpy带的函数,zeros(i)长度为i的listp0Denom = 0.0; p1Denom = 0.0for i in range(numTrainDocs):if trainCategory[i] == 1:#如果是粗口句,每个词在p1num加一p1Num += trainMatrix[i]p1Denom += sum(trainMatrix[i])else:p0Num += trainMatrix[i]p0Denom += sum(trainMatrix[i]) p1Vect = p1Num/p1Denom#粗口字概率p0Vect = p0Num/p0Denom return p0Vect,p1Vect,pAbusive