Welcome

首页 / 软件开发 / 数据结构与算法 / POJ 1265 Area (计算几何)(Pick定理)

POJ 1265 Area (计算几何)(Pick定理)2015-02-25Area:http://poj.org/problem?id=1265

大意:每次给你一个点的横纵坐标变化值,求有多少点在多边形上,有多少点在多边形内,和多边形的面积。

思路:Pick定理。

一个计算点阵中顶点在格点上的多边形面积公式:S=a+b÷2-1,其中a表示多边形内部的点数,b表示多边形边界上的点数,s表示多边形的面积。

#include <map>#include <stack>#include <queue>#include <math.h>#include <stdio.h>#include <stdlib.h>#include <string.h>#include <iostream>#include <limits.h>#include <algorithm>#define LL long long#define max(a,b) ((a)>(b)?(a):(b))#define min(a,b) ((a)<(b)?(a):(b))#define max3(a, b, c) (a>b?max(a, c):max(b, c))#define min3(a, b, c) (a<b?min(a, c):min(b, c))#define max4(a, b, c, d) max(max(a, b), max(c, d))#define min4(a, b, c, d) min(min(a, b), min(c, d))#define eps 1e-9#define INF 1 << 30using namespace std;int T, n;int cnt, Ans, a, b;struct Point{int x, y;} N[105];int Area(Point a, Point b){return a.x*b.y-a.y*b.x;}int gcd(int a, int b){if(b == 0){return a;}else{return gcd(b, a%b);}}void Solve(){int T;scanf("%d", &T);for(int p = 1; p <= T; ++p){scanf("%d", &n);Ans = cnt = N[0].x = N[0].y = 0;for(int i = 1; i <= n; ++i){scanf("%d%d", &a, &b);N[i].x = N[i-1].x+a;N[i].y = N[i-1].y+b;Ans += Area(N[i], N[i-1]);cnt += gcd(abs(a), abs(b));}Ans = abs(Ans);printf("Scenario #%d:
", p);printf("%d %d %.1lf

", (Ans-cnt+2)/2, cnt, Ans*0.5);}}int main(void){freopen("data.in", "r", stdin);//freopen("data.out", "w", stdout);Solve();return 0;}Area
From:cnblogs GLsilence