Dijkstra算法(二) C++详解2014-12-12
迪杰斯特拉算法介绍
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。
基本思想通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是"起点s到该顶点的路径"。然后,从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 然后,再从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 ... 重复该操作,直到遍历完所有顶点。
操作步骤(1) 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为"起点s到该顶点的距离"[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。
(2) 从U中选出"距离最短的顶点k",并将顶点k加入到S中;同时,从U中移除顶点k。
(3) 更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。
(4) 重复步骤(2)和(3),直到遍历完所有顶点。单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。
迪杰斯特拉算法图解

以上图G4为例,来对迪杰斯特拉进行算法演示(以第4个顶点D为起点)。
初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!
第1步:将顶点D加入到S中。此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。 注:C(3)表示C到起点D的距离是3。
第2步:将顶点C加入到S中。上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。此时,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。
第3步:将顶点E加入到S中。上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。此时,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。
第4步:将顶点F加入到S中。此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。
第5步:将顶点G加入到S中。此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。
第6步:将顶点B加入到S中。此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。
第7步:将顶点A加入到S中。此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。此时,起点D到各个顶点的最短距离就计算出来了:
A(22) B(13) C(3) D(0) E(4) F(6) G(12)。
迪杰斯特拉算法的代码说明
以"邻接矩阵"为例对迪杰斯特拉算法进行说明,对于"邻接表"实现的图在后面会给出相应的源码。
1. 基本定义class MatrixUDG {#define MAX100#define INF(~(0x1<<31))// 无穷大(即0X7FFFFFFF)private:char mVexs[MAX];// 顶点集合int mVexNum; // 顶点数int mEdgNum; // 边数int mMatrix[MAX][MAX]; // 邻接矩阵public:// 创建图(自己输入数据)MatrixUDG();// 创建图(用已提供的矩阵)//MatrixUDG(char vexs[], int vlen, char edges[][2], int elen);MatrixUDG(char vexs[], int vlen, int matrix[][9]);~MatrixUDG();// 深度优先搜索遍历图void DFS();// 广度优先搜索(类似于树的层次遍历)void BFS();// prim最小生成树(从start开始生成最小生成树)void prim(int start);// 克鲁斯卡尔(Kruskal)最小生成树void kruskal();// Dijkstra最短路径void dijkstra(int vs, int vexs[], int dist[]);// 打印矩阵队列图void print();private:// 读取一个输入字符char readChar();// 返回ch在mMatrix矩阵中的位置int getPosition(char ch);// 返回顶点v的第一个邻接顶点的索引,失败则返回-1int firstVertex(int v);// 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1int nextVertex(int v, int w);// 深度优先搜索遍历图的递归实现void DFS(int i, int *visited);// 获取图中的边EData* getEdges();// 对边按照权值大小进行排序(由小到大)void sortEdges(EData* edges, int elen);// 获取i的终点int getEnd(int vends[], int i);};
MatrixUDG是邻接矩阵对应的结构体。mVexs用于保存顶点,mVexNum是顶点数,mEdgNum是边数;mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示"顶点i(即mVexs[i])"和"顶点j(即mVexs[j])"是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。