Welcome

首页 / 软件开发 / 数据结构与算法 / HDU 2807 The Shortest Path:最短路+矩阵快速比较

HDU 2807 The Shortest Path:最短路+矩阵快速比较2014-12-04 csdn博客 shuangde800链接:

http://acm.hdu.edu.cn/showproblem.php?pid=2807

题目:

The Shortest Path
Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1421    Accepted Submission(s): 436

Problem Description
There are N cities in the country. Each city is represent by a matrix size of M*M. If city A, B and C satisfy that A*B = C, we say that there is a road from A to C with distance 1 (but that does not means there is a road from C to A).
Now the king of the country wants to ask me some problems, in the format:
Is there is a road from city X to Y?
I have to answer the questions quickly, can you help me?

Input
Each test case contains a single integer N, M, indicating the number of cities in the country and the size of each city. The next following N blocks each block stands for a matrix size of M*M. Then a integer K means the number of questions the king will ask, the following K lines each contains two integers X, Y(1-based).The input is terminated by a set starting with N = M = 0. All integers are in the range [0, 80].

Output
For each test case, you should output one line for each question the king asked, if there is a road from city X to Y? Output the shortest distance from X to Y. If not, output "Sorry".

Sample Input

3 21 12 21 11 12 24 411 33 21 12 21 11 12 24 311 30 0
Sample Output

1Sorry
题目大意:

如果矩阵A*B=C,那么就表示A--》B有一条单向路径,距离为1.

给一些矩阵,然后问任意两个矩阵直接的距离。

分析与总结:

1. 这题的关键在于矩阵运算。

首先是建图, 显然,建图要用3层for循环。

第一次我做的时是把相乘的那一步放在第三层for循环里,结果导致用G++提交TLE, 用C++提交用了1500MS+.

然后发现其实可以把相乘那一步放在第二层循环里的,结果瞬间从1500MS 降到了350MS+


2. 以上的运行时间都是基于朴素的矩阵比较方式。

我们知道要比较两个矩阵的复杂度是O(n^2), 那么有没有办法降到O(n)呢? 复杂度降了一阶,那速度的提升是很客观的。

然后查了下资料,学习了一种方法。

这个方法主要是让每个矩阵乘上一个向量(这个向量是<1,2,3,4,...m>),让这个矩阵变成一个一维的标识矩阵,之后就利用这个标识矩阵来判断两个矩阵是否相等。具体看代码。

1.朴素的矩阵比较, 359MS

//359 MS#include<iostream>#include<cstdio>#include<cstring>using namespace std;typedef int Type;const int INF = 0x7fffffff;const int VN= 100;struct Matrix{Type mat[VN][VN];int n, m;Matrix(){n=m=VN; memset(mat, 0, sizeof(mat));}Matrix(const Matrix&a){set_size(a.n, a.m);memcpy(mat, a.mat, sizeof(a.mat));}Matrix& operator = (const Matrix &a){set_size(a.n,a.m);memcpy(mat, a.mat, sizeof(a.mat));return *this;}void set_size(int row, int column){n=row; m=column;}friend Matrix operator *(const Matrix &a,const Matrix &b){Matrix ret;ret.set_size(a.n, b.m);for(int i=0; i<a.n; ++i){for(int k=0; k<a.m; ++k)if(a.mat[i][k]){for(int j=0; j<b.m; ++j)if(b.mat[k][j]){ret.mat[i][j] = ret.mat[i][j]+a.mat[i][k]*b.mat[k][j];}}}return ret;}friend bool operator==(const Matrix &a,const Matrix &b){if(a.n!=b.n || a.m!=b.m)return false;for(int i=0; i<a.n; ++i)for(int j=0; j<a.m; ++j)if(a.mat[i][j]!=b.mat[i][j])return false;return true;}};Matrix arr[VN];int n, m;int d[VN][VN];void init(){for(int i=0; i<n; ++i){d[i][i] = INF;for(int j=i+1; j<n; ++j)d[i][j] = d[j][i] = INF;}}void Floyd(){for(int k=0; k<n; ++k)for(int i=0; i<n; ++i)for(int j=0; j<n; ++j)if(d[i][k]!=INF && d[k][j]!=INF)d[i][j] = min(d[i][j],d[i][k]+d[k][j]);}int main(){while(~scanf("%d%d",&n,&m)&&n+m){init();for(int i=0; i<n; ++i){arr[i].set_size(m,m);for(int j=0; j<m; ++j){for(int k=0; k<m; ++k)scanf("%d",&arr[i].mat[j][k]);}}for(int i=0; i<n; ++i){for(int j=0; j<n; ++j)if(i!=j){Matrix ret = arr[i]*arr[j];for(int k=0; k<n; ++k)if(k!=j&&k!=i){if(ret==arr[k]){d[i][k] = 1;}}} }Floyd();scanf("%d",&m);for(int i=0; i<m; ++i){int u,v;scanf("%d %d",&u,&v);--u, --v;if(d[u][v]!=INF) printf("%d
",d[u][v]);else puts("Sorry");}}return 0;}
2. 快速矩阵比较, 62MS

更多精彩内容:http://www.bianceng.cn/Programming/sjjg/