Welcome

首页 / 软件开发 / 数据结构与算法 / CodeForces 233B Non-square Equation

CodeForces 233B Non-square Equation2014-12-02链接:

http://codeforces.com/problemset/problem/233/B

题目:

B. Non-square Equation
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Let"s consider equation:

x2+s(x)·x-n=0,

where x,n are positive integers, s(x) is the function, equal to the sum of digits of number x in the decimal number system.

You are given an integer n, find the smallest positive integer root of equation x, or else determine that there are no such roots.
Input

A single line contains integer n (1≤n≤1018) — the equation parameter.

Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64dspecifier.
Output

Print -1, if the equation doesn"t have integer positive roots. Otherwise print such smallest integer x (x>0), that the equation given in the statement holds.
Sample test(s)
input

2

output

1

input

110

output

10

input

4

output

-1

Note

In the first test case x=1 is the minimum root. As s(1)=1 and 12+1·1-2=0.

In the second test case x=10 is the minimum root. As s(10)=1+0=1 and 102+1·10-110=0.

In the third test case the equation has no roots.

分析与总结:

之前很少做数学题,所以一看到就想用二分法做,但是一直WA在test 5,后来经提醒可以将公式变形,瞬间明朗。

把公式x2+s(x)·x-n=0, 进行变形:

S(x) = n/x - x。

可大致估计S(x)的范围在1~100之间, 然后枚举S(x)的值,根据S(x)的值和方程S(x) = n/x - x,解出x = sqrt( S(x)^2/4 + n ).

然后把x代入原公式x2+s(x)·x-n=0 看是否符合。

代码:

#include<iostream>#include<cstdio>#include<cmath>using namespace std;typedef long long int64;int64 n, sx;int64 digitSum(int64 n){int64 sum=0;while(n){sum += n%10;n/=10;}return sum;}int main(){while(cin >> n){int64 x=1, end=1e8, ans=-1;for(int64 i=1; i<=100; ++i){int64 tmp = i*i/4+n;x = sqrt(tmp)-i/2; sx = digitSum(x);if(x*x+sx*x-n==0){ans=x;break;}}cout << ans << endl;}return 0;}
作者:csdn博客 shuangde800