poj 1094 Sorting It All Out(拓扑排序)2014-10-25 shuangde800 链接:http://poj.org/problem?id=1094题目:Sorting It All OutTime Limit: 1000MS Memory Limit: 10000KTotal Submissions: 21532 Accepted: 7403DescriptionAn ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.InputInput consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.OutputFor each problem instance, output consists of one line. This line should be one of the following three:Sorted sequence determined after xxx relations: yyy...y. Sorted sequence cannot be determined. Inconsistency found after xxx relations.where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.Sample Input4 6A<BA<CB<CC<DB<DA<B3 2A<BB<A26 1A<Z0 0Sample OutputSorted sequence determined after 4 relations: ABCD.Inconsistency found after 2 relations.Sorted sequence cannot be determined.分析:这题典型的拓扑排序,但是有点变化。题目样例的三种输出分别是:1. 在第x个关系中可以唯一的确定排序,并输出。2. 在第x个关系中发现了有回环(Inconsisitency矛盾)3.全部关系都没有发现上面两种情况,输出第3种.那么对于给定的m个关系,一个个的读进去,每读进去一次就要进行一次拓扑排序,如果发现情况1和情况2,那么就不用再考虑后面的那些关系了,但是还要继续读完后面的关系(但不处理)。如果读完了所有关系,还没有出现情况1和情况2,那么就输出情况3.本栏目更多精彩内容:http://www.bianceng.cn/Programming/sjjg/拓扑排序有两种方法,一种是算法导论上的,一种是用贪心的思想,这题用贪心的思想做更好。贪心的做法:1. 找到所有入度为0的点, 加入队列Q2.取出队列Q的一个点,把以这个点为起点,所有它的终点的入度都减1. 如果这个过程中发现经过减1后入度变为0的,把这个点加入队列Q。3.重复步骤2,直到Q为空。这个过程中,如果同时有多个点的入度为0,说明不能唯一确定关系。如果结束之后,所得到的经过排序的点少于点的总数,那么说明有回环。题目还需要注意的一点:如果边(u,v)之前已经输入过了,那么之后这条边都不再加入。代码:
#include<cstdio>#include<cstring>#include<vector>#include<queue>using namespace std;const int N = 105;int n,m,in[N],temp[N],Sort[N],t,pos, num;char X, O, Y;vector<int>G[N];queue<int>q;void init(){memset(in, 0, sizeof(in));for(int i=0; i<=n; ++i){G[i].clear();}}inline bool find(int u,int v){for(int i=0; i<G[u].size(); ++i)if(G[u][i]==v)return true;return false;}int topoSort(){while(!q.empty())q.pop();for(int i=0; i<n; ++i)if(in[i]==0){q.push(i);}pos=0;bool unSure=false;while(!q.empty()){if(q.size()>1) unSure=true;int t=q.front();q.pop();Sort[pos++]=t;for(int i=0; i<G[t].size(); ++i){if(--in[G[t][i]]==0)q.push(G[t][i]);}}if(pos<n) return 1;if(unSure)return 2;return 3;}int main(){int x,y,i,flag,ok,stop;while(~scanf("%d%d%*c",&n,&m)){if(!n||!m)break;init();flag=2;ok=false;for(i=1; i<=m; ++i){scanf("%c%c%c%*c", &X,&O,&Y);if(ok) continue; // 如果已经判断了有回环或者可唯一排序,不处理但是要继续读x=X-"A", y=Y-"A";if(O=="<"&&!find(y,x)){G[y].push_back(x);++in[x];}else if(O==">"&&!find(x,y)){G[x].push_back(y);++in[y];}// 拷贝一个副本,等下用来还原in数组memcpy(temp, in, sizeof(in)); flag=topoSort();memcpy(in, temp, sizeof(temp));if(flag!=2){stop=i;ok=true;}}if(flag==3){printf("Sorted sequence determined after %d relations: ", stop);for(int i=pos-1; i>=0; --i)printf("%c",Sort[i]+"A");printf(".
");}else if(flag==1){printf("Inconsistency found after %d relations.
",stop);}else{printf("Sorted sequence cannot be determined.
");}}return 0;}