Welcome

首页 / 软件开发 / 数据结构与算法 / UVa 10004:Bicoloring

UVa 10004:Bicoloring2014-10-11 csdn博客 shuangde800题目链接:

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=105

题目类型:搜索

题目:

In 1976 the ``Four Color Map Theorem" was proven with the assistance of a computer. This theorem states that every map can be colored using only four colors, in such a way that no region is colored using the same color as a neighbor region.

Here you are asked to solve a simpler similar problem. You have to decide whether a given arbitrary connected graph can be bicolored. That is, if one can assign colors (from a palette of two) to the nodes in such a way that no two adjacent nodes have the same color. To simplify the problem you can assume:

no node will have an edge to itself.

the graph is nondirected. That is, if a node a is said to be connected to a node b, then you must assume that b is connected to a.

the graph will be strongly connected. That is, there will be at least one path from any node to any other node.

题目翻译:

1976年“四色定理”在计算机的帮助下被证明。 这个定理宣告任何一个地图都可以只用四种颜色来填充, 并且没有相邻区域的颜色是相同的。

现在让你解决一个更加简单的问题。 你必须决定给定的任意相连的图能不能够用两种颜色填充。 就是说,如果给其中一个分配一种颜色, 要让所有直接相连的两个节点不能是相同的颜色。 为了让问题更简单,你可以假设:

1. 没有节点是连接向它自己的。

2. 是无向图。  即如果a连接b, 那么b也是连接a的

3. 图是强连接的。就是说至少有一条路径可走向所有节点。

样例输入:

330 11 22 0980 10 20 30 40 50 60 70 80
样例输出:

NOT BICOLORABLE.BICOLORABLE.
分析与总结: