UVa 11417 GCD (欧拉φ函数)2014-07-31 csdn博客 synapse7
11417 - GCD
Time limit: 2.000 secondshttp://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=24&page=show_problem&problem=2412Given the value of N, you will have to find the value of G. The definition of G is given below:
Here GCD(i,j) means the greatest common divisor of integer i and integer j.For those who have trouble understanding summation notation, the meaning of G is given in the following code:G=0;for(i=1;i<N;i++)for(j=i+1;j<=N;j++){ G+=GCD(i,j);}/*Here GCD() is a function that finds the greatest common divisor of the two input numbers*/InputThe input file contains at most 100 lines of inputs. Each line contains an integer N (1<N<501). The meaning of N is given in the problem statement. Input is terminated by a line containing a single zero. This zero should not be processed.
Output
For each line of input produce one line of output. This line contains the value of G for corresponding N.Sample Input Output for Sample Input
如何求

思路:可以直接算,复杂度O(N^2 logN),但是我们可以找到一种复杂度更小的算法O(N loglogN)以10为例,与之互素的有φ(10)=4个(1,3,7,9),与之gcd=2的有φ(10/2)=4个(2,4,6,8),与之gcd=5的有φ(10/5)=1个(5)这样,10提供的G值就是5*φ(2)+2*φ(5)+φ(10)=5+8+4=17根据上述计算过程可以得到如下公式:(方括号指艾弗森约定,当方括号内语句为真时其值为1,假时为0,参见《具体数学》P21)完整代码:
/*0.013s*/#include<cstdio>const int maxn = 501;int phi[maxn], G[maxn];void init(){int i, j;for (i = 2; i < maxn; ++i)phi[i] = i;for (i = 2; i < maxn; ++i){if (phi[i] == i)for (j = i; j < maxn; j += i)phi[j] = phi[j] / i * (i - 1);///计算欧拉φ函数for (j = 1; j * i < maxn; ++j)G[j * i] += j * phi[i];}for (i = 3; i < maxn; ++i)G[i] += G[i - 1];}int main(){init();int n;while (scanf("%d", &n), n)printf("%d
", G[n]);return 0;}