算法:zoj-3626 Treasure Hunt I (树形dp)2014-01-05 csdn shuangde800题意给一棵n个节点的树, 节点编号1~n, 每个节点有权值val[i],经过这个节点就可以获取这个价值( 不能重复获得)每一条边有一个花费值w(i,j), 表示走完i和j点的边要花费w(i,j)现在要从k点出发, 总花费值为m,问总花费不超过m的情况下并且最终要回到出发点,最多可以获取多少价值?思路简单树形dp。f(i,j)表示子树i, 用花费j最多可以获得的价值对与i的每个儿子,可以选择分配花费 2*w, 2*w+1, 2*w+2,...j给它,可以看作是一组物品对所有儿子做分组背包f(i, j) = max{ max{ f (i, j-k) + f(v, k-2*w) | 2*w<=k<=i } | v是i的儿子节点}ans = f(k, m);代码
/**=====================================================* This is a solution for ACM/ICPC problem** @source : zoj-3626 Treasure Hunt I* @description : 树形dp* @author : shuangde* @blog : blog.csdn.net/shuangde800* @email : zengshuangde@gmail.com* Copyright (C) 2013/08/26 16:23 All rights reserved.*======================================================*/#include <iostream>#include <cstdio>#include <algorithm>#include <vector>#include <queue>#include <cmath>#include <cstring>#include <string>#include <map>#include <set>#define MP make_pairusing namespace std;typedef pair<int, int >PII;typedef long long int64;const double PI = acos(-1.0);const int INF = 0x3f3f3f3f;const int MAXN = 110;int n, k, m;vector<PII>adj[MAXN];int val[MAXN];bool vis[MAXN];int f[MAXN][2*MAXN];void dfs(int u) {vis[u] = true;for (int i = 0; i <= m; ++i)f[u][i] = val[u];for (int e = 0; e < adj[u].size(); ++e) {int v = adj[u][e].first;int w = adj[u][e].second;if (vis[v]) continue;dfs(v);for (int i = m; i >= 0; --i) {for (int j = 2*w; j <= i; ++j) {f[u][i] = max(f[u][i], f[u][i-j] + f[v][j-2*w]);}}}}int main(){while (~scanf("%d", &n)) {// init// www.bianceng.cnfor (int i = 0; i <= n; ++i)adj[i].clear();for (int i = 1; i <= n; ++i)scanf("%d", &val[i]);for (int i = 0; i < n - 1; ++i) {int u, v, w;scanf("%d %d %d", &u, &v, &w);adj[u].push_back(MP(v, w));adj[v].push_back(MP(u, w));}scanf("%d %d", &k, &m);memset(f, 0, sizeof(f));memset(vis, 0, sizeof(vis));dfs(k);printf("%d
", f[k][m]);}return 0;}