算法:uva 10003 Cutting Sticks (区间dp)2014-01-05 csdn shuangde800题目大意一根长为l的木棍,上面有n个"切点",每个点的位置为c[i]要按照一定顺 序把每个点都砍段,最后变成了n+1段每砍一次,就会有一个花费,例如长度为10,“切点”为2,那么砍完 后会变成两段2,8, 那么花费为2+8=10如果有多个“切点”,那么不同顺序切会得到不同的花费。最小 花费是多少?思路注意要增加一个c[n] = lf(i, j) 表示(i,j)区间的最小花费f(i, j) = min{ f(i,k)+f(k+1,j)+c[r]-c[l-1] | l<=k<k }代码
/**==========================================* This is a solution for ACM/ICPC problem** @source:uva-10003 Cutting Sticks* @type: 区间dp* @author: shuangde* @blog: blog.csdn.net/shuangde800* @email: zengshuangde@gmail.com*===========================================*/#include<iostream>#include<cstdio>#include<algorithm>#include<vector>#include<queue>#include<cmath>#include<cstring>using namespace std;typedef long long int64;const int INF = 0x3f3f3f3f;const int MAXN = 55;int l, n;int c[MAXN];int f[MAXN][MAXN];int main(){while (~scanf("%d %d", &l, &n) && l) {for (int i = 0; i < n; ++i)scanf("%d", &c[i]);c[n] = l;for (int d = 2; d <= n+1; ++d) {for (int l = 0; l + d -1 <= n; ++l) {int r = l + d - 1;int& ans = f[l][r] = INF;for (int k = l; k < r; ++k) {ans = min(ans, f[l][k]+f[k+1][r]+c[r]-c[l-1]);}}}printf("The minimum cutting is %d.
", f[0][n]);}return 0;}