Welcome

首页 / 软件开发 / 数据结构与算法 / 算法:poj 3107 Godfather(树形dp)

算法:poj 3107 Godfather(树形dp)2014-01-01 csdn shuangde800题意给一颗n个结点的树,节点编号为1~n,问删除一个节点之后,让剩下的分支中节点数量最多的尽量少。可能有多种方案,按编号顺序输出。思路简单的树形dp. 其实连dp都不能算吧...就是直接计数统计先dfs计算每个节点子树的节点个数tot[i]。再次dfs更新答案:f[i] = max( n-tot[i], max{tot[v] | v是i的儿子} );两个dfs可以合并在一个dfs里完成, 复杂度O(n)

代码

/**=====================================================* This is a solution for ACM/ICPC problem** @source : poj-3107 Godfather* @description : 树形dp* @author : shuangde* @blog : blog.csdn.net/shuangde800* @email : zengshuangde@gmail.com* Copyright (C) 2013/08/30 16:26 All rights reserved.*======================================================*/#include <iostream>#include <cstdio>#include <algorithm>#include <vector>#include <cstring>using namespace std;typedef pair<int, int >PII;typedef long long int64;const int INF = 0x3f3f3f3f;const int MAXN = 50010;int tot[MAXN];int f[MAXN], minx;namespace Adj {int size, head[MAXN];struct Node{int v, next;}E[MAXN*2];inline void initAdj() {size = 0;memset(head, -1, sizeof(head));}inline void addEdge(int u, int v) {E[size].v = v;E[size].next = head[u];head[u] = size++;}}using namespace Adj;int n;int dfs(int u, int fa) {tot[u] = 1;// count// http://www.bianceng.cnfor (int e = head[u]; e != -1; e = E[e].next) {int v = E[e].v;if (v == fa) continue;tot[u] += dfs(v, u);}// 计算答案int& ans = f[u] = n - tot[u];for (int e = head[u]; e != -1; e = E[e].next) {int v = E[e].v;if (v == fa) continue;ans = max(ans, tot[v]);}minx = min(minx, ans);return tot[u];}int main(){while (~scanf("%d", &n)) {initAdj();for (int i = 0; i < n - 1; ++i) {int u, v;scanf("%d%d", &u, &v);addEdge(u, v);addEdge(v, u);}minx = INF;dfs(1, -1);bool first = true;for (int i = 1; i <= n; ++i)if (f[i] == minx) {if (first) first = false, printf("%d", i);else printf(" %d", i);}puts("");}return 0;}