算法:CodeForces #196(Div. 2) 337D Book of Evil(树形dp)2014-01-01 csdn shuangde800题意给一棵n个结点的树,任意两个节点的距离是指连接两点的最短的边数在树上的某个结点有一个“恶魔之书”,这本书会让距离它d以内的节点都受到影响已知有m个节点收到了影响,问最多有几个结点可能放着“恶魔之书”?思路要判断某个点是不是放着书,就要判断这个点的周围d距离以内是否包含所有受影响的m节点而如果某个节点距离最远的那个受影响节点的距离是L,如果L <= d,那么说明所有受影响的m节点都在d以内,就可判断这个点可能放着书那么,我们只要能够求出每个节点距离最远的影响节点是多少,就可以O(n)的时间求出答案了。所以可以用树形dp求解:f(u, 0): 表示u为顶点的子树中,距u最远的“受影响节点”的距离f(u, 1): 表示整个树删去u为顶点的子树,但是依旧保留u点为顶点,这个树中距离u最远的“受影响节点”的距离所有的f(u, 0)可以一次dfs搞定, O(n)f(u, 1)可以由顶节点一直推下去f(v, 1) = max{f[brother1][0], f[brother2][0]..., f[brother3][0], f[father][1] | brother是v的兄弟节点,fa是v的父节点} + 1这一步可以再一次dfs解决,同样是O(n)代码
/**==========================================* This is a solution for ACM/ICPC problem** @source:CodeForces 337D Book of Evil* @type: 树形dp* @author: shuangde* @blog: blog.csdn.net/shuangde800* @email: zengshuangde@gmail.com*===========================================*/#include <iostream>#include <cstdio>#include <algorithm>#include <vector>#include <queue>#include <cmath>#include <cstring>#define MP make_pairusing namespace std;typedef long long int64;typedef pair<int,int> PII;const int INF = 0x3f3f3f3f;const double PI = acos(-1.0);const int MAXN = 1e5+10;namespace Adj{int head[MAXN], size;struct Node{int v, next;}E[MAXN*2+100];void initAdj() {size = 0;memset(head, -1, sizeof(head));}void addEdge(int u, int v) {E[size].v = v;E[size].next = head[u];head[u] = size++;}}using namespace Adj;int n, m, d;int f[MAXN][2];bool vis[MAXN], p[MAXN];int ans;void dfs(int u) {vis[u] = true;int& ans = f[u][0] = (p[u] ? 0 : -1);for (int e = head[u]; e != -1; e = E[e].next) {int v = E[e].v;if (vis[v]) continue;dfs(v);if (f[v][0] != -1)ans = max(ans, f[v][0] + 1);}}// 维护m1,m2保存第一大,第二大// http://www.bianceng.cninline void update(int w, int v, PII& m1, PII& m2) {if (w >= m1.first) {m2 = m1; m1.first = w; m1.second = v;} else if (w >= m2.first) {m2.first = w; m2.second = v;}}void dp(int u) {vis[u] = true;PII m1 = MP(-1, 0), m2=MP(-1, 0);int tmp = max(f[u][0], f[u][1]);if (tmp != -1 && tmp <= d) {++ans;}update(f[u][1], u, m1, m2);for (int e = head[u]; e != -1; e = E[e].next) {int v = E[e].v;if (vis[v]) continue;if (f[v][0] != -1) {update(f[v][0]+1, v, m1, m2);}}for (int e = head[u]; e != -1; e = E[e].next) {int v = E[e].v;if (vis[v]) continue;f[v][1] = -1;if (v!=m1.second && m1.first!=-1) {f[v][1] = max(f[v][1], m1.first+1);} else if (m2.first != -1) {f[v][1] = max(f[v][1], m2.first+1);}dp(v);}}int main(){while (~scanf("%d%d%d", &n, &m, &d)) {initAdj();memset(p, 0, sizeof(p));for (int i = 0; i < m; ++i) {int x;scanf("%d", &x);p[x] = true;}for (int i = 0; i < n - 1; ++i) {int u, v;scanf("%d%d", &u, &v);addEdge(u, v);addEdge(v, u);}memset(vis, 0, sizeof(vis));dfs(1);f[1][1] = p[1]?0:-1;ans = 0;memset(vis, 0, sizeof(vis));dp(1);printf("%d
", ans);}return 0;}