Silverlight画分形(Koch曲线)2011-09-17 博客园 飘遥(周振兴)Koch曲线是一类平面曲线:从一条线段中间三分之一的部分用等边三角形的两条边代替,形成的图形 有四条边,五个节点。再依次组成边的每条线段做相同的处理。迭代如图:

稍微变换一下,画成六边形的,凸起方向向两边,用随机颜色,画完后为雪花状。程序代码:
private void LayoutRoot_Loaded(object sender, RoutedEventArgs ea)
{
double sqrt3 = Math.Sqrt(3);
Point a = new Point(50, (float)(100 + 50 * sqrt3));
Point b = new Point(100, (float)(100 + 100 * sqrt3));
Point c = new Point(200, (float)(100 + 100 * sqrt3));
Point d = new Point(250, (float)(100 + 50 * sqrt3));
Point e = new Point(200, 100);
Point f = new Point(100, 100);
line(a, b, 5);
line(b, a, 5);
line(b, c, 5);
line(c, b, 5);
line(c, d, 5);
line(d, c, 5);
line(d, e, 5);
line(e, d, 5);
line(e, f, 5);
line(f, e, 5);
line(f, a, 5);
line(a, f, 5);
}
private void line(Point a, Point b, int n)
{
if (n > 0)
{
double r = Math.Atan(Math.Abs(a.Y - b.Y) / Math.Abs(a.X - b.X)); //角度
double v = 0;
Point c = new Point(a.X + (b.X - a.X) / 3, a.Y + (b.Y - a.Y) / 3);
Point d = new Point(a.X + 2 * (b.X - a.X) / 3, a.Y + 2 * (b.Y - a.Y) / 3);
double l = Math.Sqrt((c.X - d.X) * (c.X - d.X) + (c.Y - d.Y) * (c.Y - d.Y));
Point e;
if (b.Y - a.Y >= 0 && b.X - a.X > 0)
{
v = r;
}
else if (b.Y - a.Y > 0 && b.X - a.X <= 0)
{
v = Math.PI - r;
}
else if (b.Y - a.Y <= 0 && b.X - a.X < 0)
{
v = Math.PI + r;
}
else if (b.Y - a.Y < 0 && b.X - a.X >= 0)
{
v = 2 * Math.PI - r;
}
e = new Point((float)(l * Math.Cos(v + Math.PI / 3) + c.X), (float)(c.Y + l * Math.Sin(v + Math.PI / 3)));
line(a, c, n - 1);
line(c, e, n - 1);
line(e, d, n - 1);
line(d, b, n - 1);
}
else
{
Line l = new Line();
Random rnd = new Random();
Color c = Color.FromArgb(255, (byte)rnd.Next(255), (byte)rnd.Next(255), (byte)rnd.Next());
l.Stroke = new SolidColorBrush(c);
l.X1 = a.X;
l.Y1 = a.Y;
l.X2 = b.X;
l.Y2 = b.Y;
LayoutRoot.Children.Add(l);
}
}
运行结果如图:

Koch曲线的每一部分都由4个跟它自身比例为1:3的形状相同的小曲线组成,那么它的豪斯多夫维数(分 维数)为d=log(4)/log(3) =1.26185950714...