Welcome 微信登录

首页 / 软件开发 / JAVA / Java集合学习(十二) TreeMap详细介绍(源码解析)和使用示例

Java集合学习(十二) TreeMap详细介绍(源码解析)和使用示例2014-08-03这一章,我们对TreeMap进行学习。

第1部分 TreeMap介绍

TreeMap 简介

TreeMap 是一个有序的key-value集合,它是通过红黑树实现的。
TreeMap继承于AbstractMap,所以它是一个Map,即一个key-value集合。
TreeMap 实现了NavigableMap接口,意味着它支持一系列的导航方法。比如返回有序的key集合。
TreeMap 实现了Cloneable接口,意味着它能被克隆。
TreeMap 实现了java.io.Serializable接口,意味着它支持序列化。

TreeMap基于红黑树(Red-Black tree)实现。该映射根据其键的自然顺序进行排序,或者根据创建映射时提供的 Comparator 进行排序,具体取决于使用的构造方法。
TreeMap的基本操作 containsKey、get、put 和 remove 的时间复杂度是 log(n) 。
另外,TreeMap是非同步的。 它的iterator 方法返回的迭代器是fail-fastl的。

TreeMap的继承关系

java.lang.Objectjava.util.AbstractMap<K, V>java.util.TreeMap<K, V> public class TreeMap<K,V>extends AbstractMap<K,V>implements NavigableMap<K,V>, Cloneable, java.io.Serializable {}
TreeMap与Map关系如下图:

TreeMap的构造函数

// 默认构造函数。使用该构造函数,TreeMap中的元素按照自然排序进行排列。TreeMap() // 创建的TreeMap包含MapTreeMap(Map<? extends K, ? extends V> copyFrom) // 指定Tree的比较器TreeMap(Comparator<? super K> comparator) // 创建的TreeSet包含copyFromTreeMap(SortedMap<K, ? extends V> copyFrom)
TreeMap的API

Entry<K, V>ceilingEntry(K key)KceilingKey(K key)void clear()Object clone()Comparator<? super K>comparator()booleancontainsKey(Object key)NavigableSet<K>descendingKeySet()NavigableMap<K, V> descendingMap()Set<Entry<K, V>> entrySet()Entry<K, V>firstEntry()KfirstKey()Entry<K, V>floorEntry(K key)KfloorKey(K key)Vget(Object key)NavigableMap<K, V> headMap(K to, boolean inclusive)SortedMap<K, V>headMap(K toExclusive)Entry<K, V>higherEntry(K key)KhigherKey(K key)booleanisEmpty()Set<K> keySet()Entry<K, V>lastEntry()KlastKey()Entry<K, V>lowerEntry(K key)KlowerKey(K key)NavigableSet<K>navigableKeySet()Entry<K, V>pollFirstEntry()Entry<K, V>pollLastEntry()Vput(K key, V value)Vremove(Object key)intsize()SortedMap<K, V>subMap(K fromInclusive, K toExclusive)NavigableMap<K, V> subMap(K from, boolean fromInclusive, K to, boolean toInclusive)NavigableMap<K, V> tailMap(K from, boolean inclusive)SortedMap<K, V>tailMap(K fromInclusive)

第2部分 TreeMap源码解析

为了更了解TreeMap的原理,下面对TreeMap源码代码作出分析。我们先给出源码内容,后面再对源码进行详细说明,当然,源码内容中也包含了详细的代码注释。读者阅读的时候,建议先看后面的说明,先建立一个整体印象;之后再阅读源码。

package java.util; public class TreeMap<K,V>extends AbstractMap<K,V>implements NavigableMap<K,V>, Cloneable, java.io.Serializable{ // 比较器。用来给TreeMap排序private final Comparator<? super K> comparator; // TreeMap是红黑树实现的,root是红黑书的根节点private transient Entry<K,V> root = null; // 红黑树的节点总数private transient int size = 0; // 记录红黑树的修改次数private transient int modCount = 0; // 默认构造函数public TreeMap() {comparator = null;} // 带比较器的构造函数public TreeMap(Comparator<? super K> comparator) {this.comparator = comparator;} // 带Map的构造函数,Map会成为TreeMap的子集public TreeMap(Map<? extends K, ? extends V> m) {comparator = null;putAll(m);} // 带SortedMap的构造函数,SortedMap会成为TreeMap的子集public TreeMap(SortedMap<K, ? extends V> m) {comparator = m.comparator();try {buildFromSorted(m.size(), m.entrySet().iterator(), null, null);} catch (java.io.IOException cannotHappen) {} catch (ClassNotFoundException cannotHappen) {}} public int size() {return size;} // 返回TreeMap中是否保护“键(key)”public boolean containsKey(Object key) {return getEntry(key) != null;} // 返回TreeMap中是否保护"值(value)"public boolean containsValue(Object value) {// getFirstEntry() 是返回红黑树的第一个节点// successor(e) 是获取节点e的后继节点for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))if (valEquals(value, e.value))return true;return false;} // 获取“键(key)”对应的“值(value)”public V get(Object key) {// 获取“键”为key的节点(p)Entry<K,V> p = getEntry(key);// 若节点(p)为null,返回null;否则,返回节点对应的值return (p==null ? null : p.value);} public Comparator<? super K> comparator() {return comparator;} // 获取第一个节点对应的keypublic K firstKey() {return key(getFirstEntry());} // 获取最后一个节点对应的keypublic K lastKey() {return key(getLastEntry());} // 将map中的全部节点添加到TreeMap中public void putAll(Map<? extends K, ? extends V> map) {// 获取map的大小int mapSize = map.size();// 如果TreeMap的大小是0,且map的大小不是0,且map是已排序的“key-value对”if (size==0 && mapSize!=0 && map instanceof SortedMap) {Comparator c = ((SortedMap)map).comparator();// 如果TreeMap和map的比较器相等;// 则将map的元素全部拷贝到TreeMap中,然后返回!if (c == comparator || (c != null && c.equals(comparator))) {++modCount;try {buildFromSorted(mapSize, map.entrySet().iterator(),null, null);} catch (java.io.IOException cannotHappen) {} catch (ClassNotFoundException cannotHappen) {}return;}}// 调用AbstractMap中的putAll();// AbstractMap中的putAll()又会调用到TreeMap的put()super.putAll(map);} // 获取TreeMap中“键”为key的节点final Entry<K,V> getEntry(Object key) {// 若“比较器”为null,则通过getEntryUsingComparator()获取“键”为key的节点if (comparator != null)return getEntryUsingComparator(key);if (key == null)throw new NullPointerException();Comparable<? super K> k = (Comparable<? super K>) key;// 将p设为根节点Entry<K,V> p = root;while (p != null) {int cmp = k.compareTo(p.key);// 若“p的key” < key,则p=“p的左孩子”if (cmp < 0)p = p.left;// 若“p的key” > key,则p=“p的左孩子”else if (cmp > 0)p = p.right;// 若“p的key” = key,则返回节点pelsereturn p;}return null;} // 获取TreeMap中“键”为key的节点(对应TreeMap的比较器不是null的情况)final Entry<K,V> getEntryUsingComparator(Object key) {K k = (K) key;Comparator<? super K> cpr = comparator;if (cpr != null) {// 将p设为根节点Entry<K,V> p = root;while (p != null) {int cmp = cpr.compare(k, p.key);// 若“p的key” < key,则p=“p的左孩子”if (cmp < 0)p = p.left;// 若“p的key” > key,则p=“p的左孩子”else if (cmp > 0)p = p.right;// 若“p的key” = key,则返回节点pelsereturn p;}}return null;} // 获取TreeMap中不小于key的最小的节点;// 若不存在(即TreeMap中所有节点的键都比key大),就返回nullfinal Entry<K,V> getCeilingEntry(K key) {Entry<K,V> p = root;while (p != null) {int cmp = compare(key, p.key);// 情况一:若“p的key” > key。// 若 p 存在左孩子,则设 p=“p的左孩子”;// 否则,返回pif (cmp < 0) {if (p.left != null)p = p.left;elsereturn p;// 情况二:若“p的key” < key。} else if (cmp > 0) {// 若 p 存在右孩子,则设 p=“p的右孩子”if (p.right != null) {p = p.right;} else {// 若 p 不存在右孩子,则找出 p 的后继节点,并返回// 注意:这里返回的 “p的后继节点”有2种可能性:第一,null;第二,TreeMap中大于key的最小的节点。// 理解这一点的核心是,getCeilingEntry是从root开始遍历的。// 若getCeilingEntry能走到这一步,那么,它之前“已经遍历过的节点的key”都 > key。// 能理解上面所说的,那么就很容易明白,为什么“p的后继节点”又2种可能性了。Entry<K,V> parent = p.parent;Entry<K,V> ch = p;while (parent != null && ch == parent.right) {ch = parent;parent = parent.parent;}return parent;}// 情况三:若“p的key” = key。} elsereturn p;}return null;} // 获取TreeMap中不大于key的最大的节点;// 若不存在(即TreeMap中所有节点的键都比key小),就返回null// getFloorEntry的原理和getCeilingEntry类似,这里不再多说。final Entry<K,V> getFloorEntry(K key) {Entry<K,V> p = root;while (p != null) {int cmp = compare(key, p.key);if (cmp > 0) {if (p.right != null)p = p.right;elsereturn p;} else if (cmp < 0) {if (p.left != null) {p = p.left;} else {Entry<K,V> parent = p.parent;Entry<K,V> ch = p;while (parent != null && ch == parent.left) {ch = parent;parent = parent.parent;}return parent;}} elsereturn p; }return null;} // 获取TreeMap中大于key的最小的节点。// 若不存在,就返回null。// 请参照getCeilingEntry来对getHigherEntry进行理解。final Entry<K,V> getHigherEntry(K key) {Entry<K,V> p = root;while (p != null) {int cmp = compare(key, p.key);if (cmp < 0) {if (p.left != null)p = p.left;elsereturn p;} else {if (p.right != null) {p = p.right;} else {Entry<K,V> parent = p.parent;Entry<K,V> ch = p;while (parent != null && ch == parent.right) {ch = parent;parent = parent.parent;}return parent;}}}return null;} // 获取TreeMap中小于key的最大的节点。// 若不存在,就返回null。// 请参照getCeilingEntry来对getLowerEntry进行理解。final Entry<K,V> getLowerEntry(K key) {Entry<K,V> p = root;while (p != null) {int cmp = compare(key, p.key);if (cmp > 0) {if (p.right != null)p = p.right;elsereturn p;} else {if (p.left != null) {p = p.left;} else {Entry<K,V> parent = p.parent;Entry<K,V> ch = p;while (parent != null && ch == parent.left) {ch = parent;parent = parent.parent;}return parent;}}}return null;} // 将“key, value”添加到TreeMap中// 理解TreeMap的前提是掌握“红黑树”。// 若理解“红黑树中添加节点”的算法,则很容易理解put。public V put(K key, V value) {Entry<K,V> t = root;// 若红黑树为空,则插入根节点if (t == null) {// TBD:// 5045147: (coll) Adding null to an empty TreeSet should// throw NullPointerException//// compare(key, key); // type checkroot = new Entry<K,V>(key, value, null);size = 1;modCount++;return null;}int cmp;Entry<K,V> parent;// split comparator and comparable pathsComparator<? super K> cpr = comparator;// 在二叉树(红黑树是特殊的二叉树)中,找到(key, value)的插入位置。// 红黑树是以key来进行排序的,所以这里以key来进行查找。if (cpr != null) {do {parent = t;cmp = cpr.compare(key, t.key);if (cmp < 0)t = t.left;else if (cmp > 0)t = t.right;elsereturn t.setValue(value);} while (t != null);}else {if (key == null)throw new NullPointerException();Comparable<? super K> k = (Comparable<? super K>) key;do {parent = t;cmp = k.compareTo(t.key);if (cmp < 0)t = t.left;else if (cmp > 0)t = t.right;elsereturn t.setValue(value);} while (t != null);}// 新建红黑树的节点(e)Entry<K,V> e = new Entry<K,V>(key, value, parent);if (cmp < 0)parent.left = e;elseparent.right = e;// 红黑树插入节点后,不再是一颗红黑树;// 这里通过fixAfterInsertion的处理,来恢复红黑树的特性。fixAfterInsertion(e);size++;modCount++;return null;} // 删除TreeMap中的键为key的节点,并返回节点的值public V remove(Object key) {// 找到键为key的节点Entry<K,V> p = getEntry(key);if (p == null)return null; // 保存节点的值V oldValue = p.value;// 删除节点deleteEntry(p);return oldValue;} // 清空红黑树public void clear() {modCount++;size = 0;root = null;} // 克隆一个TreeMap,并返回Object对象public Object clone() {TreeMap<K,V> clone = null;try {clone = (TreeMap<K,V>) super.clone();} catch (CloneNotSupportedException e) {throw new InternalError();} // Put clone into "virgin" state (except for comparator)clone.root = null;clone.size = 0;clone.modCount = 0;clone.entrySet = null;clone.navigableKeySet = null;clone.descendingMap = null; // Initialize clone with our mappingstry {clone.buildFromSorted(size, entrySet().iterator(), null, null);} catch (java.io.IOException cannotHappen) {} catch (ClassNotFoundException cannotHappen) {} return clone;} // 获取第一个节点(对外接口)。public Map.Entry<K,V> firstEntry() {return exportEntry(getFirstEntry());} // 获取最后一个节点(对外接口)。public Map.Entry<K,V> lastEntry() {return exportEntry(getLastEntry());} // 获取第一个节点,并将改节点从TreeMap中删除。public Map.Entry<K,V> pollFirstEntry() {// 获取第一个节点Entry<K,V> p = getFirstEntry();Map.Entry<K,V> result = exportEntry(p);// 删除第一个节点if (p != null)deleteEntry(p);return result;} // 获取最后一个节点,并将改节点从TreeMap中删除。public Map.Entry<K,V> pollLastEntry() {// 获取最后一个节点Entry<K,V> p = getLastEntry();Map.Entry<K,V> result = exportEntry(p);// 删除最后一个节点if (p != null)deleteEntry(p);return result;} // 返回小于key的最大的键值对,没有的话返回nullpublic Map.Entry<K,V> lowerEntry(K key) {return exportEntry(getLowerEntry(key));} // 返回小于key的最大的键值对所对应的KEY,没有的话返回nullpublic K lowerKey(K key) {return keyOrNull(getLowerEntry(key));} // 返回不大于key的最大的键值对,没有的话返回nullpublic Map.Entry<K,V> floorEntry(K key) {return exportEntry(getFloorEntry(key));} // 返回不大于key的最大的键值对所对应的KEY,没有的话返回nullpublic K floorKey(K key) {return keyOrNull(getFloorEntry(key));} // 返回不小于key的最小的键值对,没有的话返回nullpublic Map.Entry<K,V> ceilingEntry(K key) {return exportEntry(getCeilingEntry(key));} // 返回不小于key的最小的键值对所对应的KEY,没有的话返回nullpublic K ceilingKey(K key) {return keyOrNull(getCeilingEntry(key));} // 返回大于key的最小的键值对,没有的话返回nullpublic Map.Entry<K,V> higherEntry(K key) {return exportEntry(getHigherEntry(key));} // 返回大于key的最小的键值对所对应的KEY,没有的话返回nullpublic K higherKey(K key) {return keyOrNull(getHigherEntry(key));} // TreeMap的红黑树节点对应的集合private transient EntrySet entrySet = null;// KeySet为KeySet导航类private transient KeySet<K> navigableKeySet = null;// descendingMap为键值对的倒序“映射”private transient NavigableMap<K,V> descendingMap = null; // 返回TreeMap的“键的集合”public Set<K> keySet() {return navigableKeySet();} // 获取“可导航”的Key的集合// 实际上是返回KeySet类的对象。public NavigableSet<K> navigableKeySet() {KeySet<K> nks = navigableKeySet;return (nks != null) ? nks : (navigableKeySet = new KeySet(this));} // 返回“TreeMap的值对应的集合”public Collection<V> values() {Collection<V> vs = values;return (vs != null) ? vs : (values = new Values());} // 获取TreeMap的Entry的集合,实际上是返回EntrySet类的对象。public Set<Map.Entry<K,V>> entrySet() {EntrySet es = entrySet;return (es != null) ? es : (entrySet = new EntrySet());} // 获取TreeMap的降序Map// 实际上是返回DescendingSubMap类的对象public NavigableMap<K, V> descendingMap() {NavigableMap<K, V> km = descendingMap;return (km != null) ? km :(descendingMap = new DescendingSubMap(this,true, null, true,true, null, true));} // 获取TreeMap的子Map// 范围是从fromKey 到 toKey;fromInclusive是是否包含fromKey的标记,toInclusive是是否包含toKey的标记public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,K toKey, boolean toInclusive) {return new AscendingSubMap(this, false, fromKey, fromInclusive, false, toKey, toInclusive);} // 获取“Map的头部”// 范围从第一个节点 到 toKey, inclusive是是否包含toKey的标记public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {return new AscendingSubMap(this, true,null,true, false, toKey, inclusive);} // 获取“Map的尾部”。// 范围是从 fromKey 到 最后一个节点,inclusive是是否包含fromKey的标记public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {return new AscendingSubMap(this, false, fromKey, inclusive, true,null,true);} // 获取“子Map”。// 范围是从fromKey(包括) 到 toKey(不包括)public SortedMap<K,V> subMap(K fromKey, K toKey) {return subMap(fromKey, true, toKey, false);} // 获取“Map的头部”。// 范围从第一个节点 到 toKey(不包括)public SortedMap<K,V> headMap(K toKey) {return headMap(toKey, false);} // 获取“Map的尾部”。// 范围是从 fromKey(包括) 到 最后一个节点public SortedMap<K,V> tailMap(K fromKey) {return tailMap(fromKey, true);} // ”TreeMap的值的集合“对应的类,它集成于AbstractCollectionclass Values extends AbstractCollection<V> {// 返回迭代器public Iterator<V> iterator() {return new ValueIterator(getFirstEntry());} // 返回个数public int size() {return TreeMap.this.size();} // "TreeMap的值的集合"中是否包含"对象o"public boolean contains(Object o) {return TreeMap.this.containsValue(o);} // 删除"TreeMap的值的集合"中的"对象o"public boolean remove(Object o) {for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {if (valEquals(e.getValue(), o)) {deleteEntry(e);return true;}}return false;} // 清空删除"TreeMap的值的集合"public void clear() {TreeMap.this.clear();}} // EntrySet是“TreeMap的所有键值对组成的集合”,// EntrySet集合的单位是单个“键值对”。class EntrySet extends AbstractSet<Map.Entry<K,V>> {public Iterator<Map.Entry<K,V>> iterator() {return new EntryIterator(getFirstEntry());} // EntrySet中是否包含“键值对Object”public boolean contains(Object o) {if (!(o instanceof Map.Entry))return false;Map.Entry<K,V> entry = (Map.Entry<K,V>) o;V value = entry.getValue();Entry<K,V> p = getEntry(entry.getKey());return p != null && valEquals(p.getValue(), value);} // 删除EntrySet中的“键值对Object”public boolean remove(Object o) {if (!(o instanceof Map.Entry))return false;Map.Entry<K,V> entry = (Map.Entry<K,V>) o;V value = entry.getValue();Entry<K,V> p = getEntry(entry.getKey());if (p != null && valEquals(p.getValue(), value)) {deleteEntry(p);return true;}return false;} // 返回EntrySet中元素个数public int size() {return TreeMap.this.size();} // 清空EntrySetpublic void clear() {TreeMap.this.clear();}} // 返回“TreeMap的KEY组成的迭代器(顺序)”Iterator<K> keyIterator() {return new KeyIterator(getFirstEntry());} // 返回“TreeMap的KEY组成的迭代器(逆序)”Iterator<K> descendingKeyIterator() {return new DescendingKeyIterator(getLastEntry());} // KeySet是“TreeMap中所有的KEY组成的集合”// KeySet继承于AbstractSet,而且实现了NavigableSet接口。static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {// NavigableMap成员,KeySet是通过NavigableMap实现的private final NavigableMap<E, Object> m;KeySet(NavigableMap<E,Object> map) { m = map; } // 升序迭代器public Iterator<E> iterator() {// 若是TreeMap对象,则调用TreeMap的迭代器keyIterator()// 否则,调用TreeMap子类NavigableSubMap的迭代器keyIterator()if (m instanceof TreeMap)return ((TreeMap<E,Object>)m).keyIterator();elsereturn (Iterator<E>)(((TreeMap.NavigableSubMap)m).keyIterator());} // 降序迭代器public Iterator<E> descendingIterator() {// 若是TreeMap对象,则调用TreeMap的迭代器descendingKeyIterator()// 否则,调用TreeMap子类NavigableSubMap的迭代器descendingKeyIterator()if (m instanceof TreeMap)return ((TreeMap<E,Object>)m).descendingKeyIterator();elsereturn (Iterator<E>)(((TreeMap.NavigableSubMap)m).descendingKeyIterator());} public int size() { return m.size(); }public boolean isEmpty() { return m.isEmpty(); }public boolean contains(Object o) { return m.containsKey(o); }public void clear() { m.clear(); }public E lower(E e) { return m.lowerKey(e); }public E floor(E e) { return m.floorKey(e); }public E ceiling(E e) { return m.ceilingKey(e); }public E higher(E e) { return m.higherKey(e); }public E first() { return m.firstKey(); }public E last() { return m.lastKey(); }public Comparator<? super E> comparator() { return m.comparator(); }public E pollFirst() {Map.Entry<E,Object> e = m.pollFirstEntry();return e == null? null : e.getKey();}public E pollLast() {Map.Entry<E,Object> e = m.pollLastEntry();return e == null? null : e.getKey();}public boolean remove(Object o) {int oldSize = size();m.remove(o);return size() != oldSize;}public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,E toElement, boolean toInclusive) {return new TreeSet<E>(m.subMap(fromElement, fromInclusive, toElement, toInclusive));}public NavigableSet<E> headSet(E toElement, boolean inclusive) {return new TreeSet<E>(m.headMap(toElement, inclusive));}public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {return new TreeSet<E>(m.tailMap(fromElement, inclusive));}public SortedSet<E> subSet(E fromElement, E toElement) {return subSet(fromElement, true, toElement, false);}public SortedSet<E> headSet(E toElement) {return headSet(toElement, false);}public SortedSet<E> tailSet(E fromElement) {return tailSet(fromElement, true);}public NavigableSet<E> descendingSet() {return new TreeSet(m.descendingMap());}} // 它是TreeMap中的一个抽象迭代器,实现了一些通用的接口。abstract class PrivateEntryIterator<T> implements Iterator<T> {// 下一个元素Entry<K,V> next;// 上一次返回元素Entry<K,V> lastReturned;// 期望的修改次数,用于实现fast-fail机制int expectedModCount; PrivateEntryIterator(Entry<K,V> first) {expectedModCount = modCount;lastReturned = null;next = first;} public final boolean hasNext() {return next != null;} // 获取下一个节点final Entry<K,V> nextEntry() {Entry<K,V> e = next;if (e == null)throw new NoSuchElementException();if (modCount != expectedModCount)throw new ConcurrentModificationException();next = successor(e);lastReturned = e;return e;} // 获取上一个节点final Entry<K,V> prevEntry() {Entry<K,V> e = next;if (e == null)throw new NoSuchElementException();if (modCount != expectedModCount)throw new ConcurrentModificationException();next = predecessor(e);lastReturned = e;return e;} // 删除当前节点public void remove() {if (lastReturned == null)throw new IllegalStateException();if (modCount != expectedModCount)throw new ConcurrentModificationException();// 这里重点强调一下“为什么当lastReturned的左右孩子都不为空时,要将其赋值给next”。// 目的是为了“删除lastReturned节点之后,next节点指向的仍然是下一个节点”。// 根据“红黑树”的特性可知:// 当被删除节点有两个儿子时。那么,首先把“它的后继节点的内容”复制给“该节点的内容”;之后,删除“它的后继节点”。// 这意味着“当被删除节点有两个儿子时,删除当前节点之后,"新的当前节点"实际上是‘原有的后继节点(即下一个节点)’”。// 而此时next仍然指向"新的当前节点"。也就是说next是仍然是指向下一个节点;能继续遍历红黑树。if (lastReturned.left != null && lastReturned.right != null)next = lastReturned;deleteEntry(lastReturned);expectedModCount = modCount;lastReturned = null;}} // TreeMap的Entry对应的迭代器final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {EntryIterator(Entry<K,V> first) {super(first);}public Map.Entry<K,V> next() {return nextEntry();}} // TreeMap的Value对应的迭代器final class ValueIterator extends PrivateEntryIterator<V> {ValueIterator(Entry<K,V> first) {super(first);}public V next() {return nextEntry().value;}} // reeMap的KEY组成的迭代器(顺序)final class KeyIterator extends PrivateEntryIterator<K> {KeyIterator(Entry<K,V> first) {super(first);}public K next() {return nextEntry().key;}} // TreeMap的KEY组成的迭代器(逆序)final class DescendingKeyIterator extends PrivateEntryIterator<K> {DescendingKeyIterator(Entry<K,V> first) {super(first);}public K next() {return prevEntry().key;}} // 比较两个对象的大小final int compare(Object k1, Object k2) {return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2): comparator.compare((K)k1, (K)k2);} // 判断两个对象是否相等final static boolean valEquals(Object o1, Object o2) {return (o1==null ? o2==null : o1.equals(o2));} // 返回“Key-Value键值对”的一个简单拷贝(AbstractMap.SimpleImmutableEntry<K,V>对象)// 可用来读取“键值对”的值static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {return e == null? null :new AbstractMap.SimpleImmutableEntry<K,V>(e);} // 若“键值对”不为null,则返回KEY;否则,返回nullstatic <K,V> K keyOrNull(TreeMap.Entry<K,V> e) {return e == null? null : e.key;} // 若“键值对”不为null,则返回KEY;否则,抛出异常static <K> K key(Entry<K,?> e) {if (e==null)throw new NoSuchElementException();return e.key;} // TreeMap的SubMap,它一个抽象类,实现了公共操作。// 它包括了"(升序)AscendingSubMap"和"(降序)DescendingSubMap"两个子类。static abstract class NavigableSubMap<K,V> extends AbstractMap<K,V>implements NavigableMap<K,V>, java.io.Serializable {// TreeMap的拷贝final TreeMap<K,V> m;// lo是“子Map范围的最小值”,hi是“子Map范围的最大值”;// loInclusive是“是否包含lo的标记”,hiInclusive是“是否包含hi的标记”// fromStart是“表示是否从第一个节点开始计算”,// toEnd是“表示是否计算到最后一个节点”final K lo, hi;final boolean fromStart, toEnd;final boolean loInclusive, hiInclusive; // 构造函数NavigableSubMap(TreeMap<K,V> m,boolean fromStart, K lo, boolean loInclusive,boolean toEnd, K hi, boolean hiInclusive) {if (!fromStart && !toEnd) {if (m.compare(lo, hi) > 0)throw new IllegalArgumentException("fromKey > toKey");} else {if (!fromStart) // type checkm.compare(lo, lo);if (!toEnd)m.compare(hi, hi);} this.m = m;this.fromStart = fromStart;this.lo = lo;this.loInclusive = loInclusive;this.toEnd = toEnd;this.hi = hi;this.hiInclusive = hiInclusive;} // 判断key是否太小final boolean tooLow(Object key) {// 若该SubMap不包括“起始节点”,// 并且,“key小于最小键(lo)”或者“key等于最小键(lo),但最小键却没包括在该SubMap内”// 则判断key太小。其余情况都不是太小!if (!fromStart) {int c = m.compare(key, lo);if (c < 0 || (c == 0 && !loInclusive))return true;}return false;} // 判断key是否太大final boolean tooHigh(Object key) {// 若该SubMap不包括“结束节点”,// 并且,“key大于最大键(hi)”或者“key等于最大键(hi),但最大键却没包括在该SubMap内”// 则判断key太大。其余情况都不是太大!if (!toEnd) {int c = m.compare(key, hi);if (c > 0 || (c == 0 && !hiInclusive))return true;}return false;} // 判断key是否在“lo和hi”开区间范围内final boolean inRange(Object key) {return !tooLow(key) && !tooHigh(key);} // 判断key是否在封闭区间内final boolean inClosedRange(Object key) {return (fromStart || m.compare(key, lo) >= 0)&& (toEnd || m.compare(hi, key) >= 0);} // 判断key是否在区间内, inclusive是区间开关标志final boolean inRange(Object key, boolean inclusive) {return inclusive ? inRange(key) : inClosedRange(key);} // 返回最低的Entryfinal TreeMap.Entry<K,V> absLowest() {// 若“包含起始节点”,则调用getFirstEntry()返回第一个节点// 否则的话,若包括lo,则调用getCeilingEntry(lo)获取大于/等于lo的最小的Entry;// 否则,调用getHigherEntry(lo)获取大于lo的最小EntryTreeMap.Entry<K,V> e =(fromStart ?m.getFirstEntry() : (loInclusive ? m.getCeilingEntry(lo) :m.getHigherEntry(lo)));return (e == null || tooHigh(e.key)) ? null : e;} // 返回最高的Entryfinal TreeMap.Entry<K,V> absHighest() {// 若“包含结束节点”,则调用getLastEntry()返回最后一个节点// 否则的话,若包括hi,则调用getFloorEntry(hi)获取小于/等于hi的最大的Entry;// 否则,调用getLowerEntry(hi)获取大于hi的最大EntryTreeMap.Entry<K,V> e =TreeMap.Entry<K,V> e =(toEnd ?m.getLastEntry() : (hiInclusive ?m.getFloorEntry(hi) : m.getLowerEntry(hi)));return (e == null || tooLow(e.key)) ? null : e;} // 返回"大于/等于key的最小的Entry"final TreeMap.Entry<K,V> absCeiling(K key) {// 只有在“key太小”的情况下,absLowest()返回的Entry才是“大于/等于key的最小Entry”// 其它情况下不行。例如,当包含“起始节点”时,absLowest()返回的是最小Entry了!if (tooLow(key))return absLowest();// 获取“大于/等于key的最小Entry”TreeMap.Entry<K,V> e = m.getCeilingEntry(key);return (e == null || tooHigh(e.key)) ? null : e;} // 返回"大于key的最小的Entry"final TreeMap.Entry<K,V> absHigher(K key) {// 只有在“key太小”的情况下,absLowest()返回的Entry才是“大于key的最小Entry”// 其它情况下不行。例如,当包含“起始节点”时,absLowest()返回的是最小Entry了,而不一定是“大于key的最小Entry”!if (tooLow(key))return absLowest();// 获取“大于key的最小Entry”TreeMap.Entry<K,V> e = m.getHigherEntry(key);return (e == null || tooHigh(e.key)) ? null : e;} // 返回"小于/等于key的最大的Entry"final TreeMap.Entry<K,V> absFloor(K key) {// 只有在“key太大”的情况下,(absHighest)返回的Entry才是“小于/等于key的最大Entry”// 其它情况下不行。例如,当包含“结束节点”时,absHighest()返回的是最大Entry了!if (tooHigh(key))return absHighest();// 获取"小于/等于key的最大的Entry"TreeMap.Entry<K,V> e = m.getFloorEntry(key);return (e == null || tooLow(e.key)) ? null : e;} // 返回"小于key的最大的Entry"final TreeMap.Entry<K,V> absLower(K key) {// 只有在“key太大”的情况下,(absHighest)返回的Entry才是“小于key的最大Entry”// 其它情况下不行。例如,当包含“结束节点”时,absHighest()返回的是最大Entry了,而不一定是“小于key的最大Entry”!if (tooHigh(key))return absHighest();// 获取"小于key的最大的Entry"TreeMap.Entry<K,V> e = m.getLowerEntry(key);return (e == null || tooLow(e.key)) ? null : e;} // 返回“大于最大节点中的最小节点”,不存在的话,返回nullfinal TreeMap.Entry<K,V> absHighFence() {return (toEnd ? null : (hiInclusive ?m.getHigherEntry(hi) :m.getCeilingEntry(hi)));} // 返回“小于最小节点中的最大节点”,不存在的话,返回nullfinal TreeMap.Entry<K,V> absLowFence() {return (fromStart ? null : (loInclusive ?m.getLowerEntry(lo) :m.getFloorEntry(lo)));} // 下面几个abstract方法是需要NavigableSubMap的实现类实现的方法abstract TreeMap.Entry<K,V> subLowest();abstract TreeMap.Entry<K,V> subHighest();abstract TreeMap.Entry<K,V> subCeiling(K key);abstract TreeMap.Entry<K,V> subHigher(K key);abstract TreeMap.Entry<K,V> subFloor(K key);abstract TreeMap.Entry<K,V> subLower(K key);// 返回“顺序”的键迭代器abstract Iterator<K> keyIterator();// 返回“逆序”的键迭代器abstract Iterator<K> descendingKeyIterator(); // 返回SubMap是否为空。空的话,返回true,否则返回falsepublic boolean isEmpty() {return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();} // 返回SubMap的大小public int size() {return (fromStart && toEnd) ? m.size() : entrySet().size();} // 返回SubMap是否包含键keypublic final boolean containsKey(Object key) {return inRange(key) && m.containsKey(key);} // 将key-value 插入SubMap中public final V put(K key, V value) {if (!inRange(key))throw new IllegalArgumentException("key out of range");return m.put(key, value);} // 获取key对应值public final V get(Object key) {return !inRange(key)? null :m.get(key);} // 删除key对应的键值对public final V remove(Object key) {return !inRange(key)? null: m.remove(key);} // 获取“大于/等于key的最小键值对”public final Map.Entry<K,V> ceilingEntry(K key) {return exportEntry(subCeiling(key));} // 获取“大于/等于key的最小键”public final K ceilingKey(K key) {return keyOrNull(subCeiling(key));} // 获取“大于key的最小键值对”public final Map.Entry<K,V> higherEntry(K key) {return exportEntry(subHigher(key));} // 获取“大于key的最小键”public final K higherKey(K key) {return keyOrNull(subHigher(key));} // 获取“小于/等于key的最大键值对”public final Map.Entry<K,V> floorEntry(K key) {return exportEntry(subFloor(key));} // 获取“小于/等于key的最大键”public final K floorKey(K key) {return keyOrNull(subFloor(key));} // 获取“小于key的最大键值对”public final Map.Entry<K,V> lowerEntry(K key) {return exportEntry(subLower(key));} // 获取“小于key的最大键”public final K lowerKey(K key) {return keyOrNull(subLower(key));} // 获取"SubMap的第一个键"public final K firstKey() {return key(subLowest());} // 获取"SubMap的最后一个键"public final K lastKey() {return key(subHighest());} // 获取"SubMap的第一个键值对"public final Map.Entry<K,V> firstEntry() {return exportEntry(subLowest());} // 获取"SubMap的最后一个键值对"public final Map.Entry<K,V> lastEntry() {return exportEntry(subHighest());} // 返回"SubMap的第一个键值对",并从SubMap中删除改键值对public final Map.Entry<K,V> pollFirstEntry() {TreeMap.Entry<K,V> e = subLowest();Map.Entry<K,V> result = exportEntry(e);if (e != null)m.deleteEntry(e);return result;} // 返回"SubMap的最后一个键值对",并从SubMap中删除改键值对public final Map.Entry<K,V> pollLastEntry() {TreeMap.Entry<K,V> e = subHighest();Map.Entry<K,V> result = exportEntry(e);if (e != null)m.deleteEntry(e);return result;} // Viewstransient NavigableMap<K,V> descendingMapView = null;transient EntrySetView entrySetView = null;transient KeySet<K> navigableKeySetView = null; // 返回NavigableSet对象,实际上返回的是当前对象的"Key集合"。 public final NavigableSet<K> navigableKeySet() {KeySet<K> nksv = navigableKeySetView;return (nksv != null) ? nksv :(navigableKeySetView = new TreeMap.KeySet(this));} // 返回"Key集合"对象public final Set<K> keySet() {return navigableKeySet();} // 返回“逆序”的Key集合public NavigableSet<K> descendingKeySet() {return descendingMap().navigableKeySet();} // 排列fromKey(包含) 到 toKey(不包含) 的子mappublic final SortedMap<K,V> subMap(K fromKey, K toKey) {return subMap(fromKey, true, toKey, false);} // 返回当前Map的头部(从第一个节点 到 toKey, 不包括toKey)public final SortedMap<K,V> headMap(K toKey) {return headMap(toKey, false);} // 返回当前Map的尾部[从 fromKey(包括fromKeyKey) 到 最后一个节点]public final SortedMap<K,V> tailMap(K fromKey) {return tailMap(fromKey, true);} // Map的Entry的集合abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {private transient int size = -1, sizeModCount; // 获取EntrySet的大小public int size() {// 若SubMap是从“开始节点”到“结尾节点”,则SubMap大小就是原TreeMap的大小if (fromStart && toEnd)return m.size();// 若SubMap不是从“开始节点”到“结尾节点”,则调用iterator()遍历EntrySetView中的元素if (size == -1 || sizeModCount != m.modCount) {sizeModCount = m.modCount;size = 0;Iterator i = iterator();while (i.hasNext()) {size++;i.next();}}return size;} // 判断EntrySetView是否为空public boolean isEmpty() {TreeMap.Entry<K,V> n = absLowest();return n == null || tooHigh(n.key);} // 判断EntrySetView是否包含Objectpublic boolean contains(Object o) {if (!(o instanceof Map.Entry))return false;Map.Entry<K,V> entry = (Map.Entry<K,V>) o;K key = entry.getKey();if (!inRange(key))return false;TreeMap.Entry node = m.getEntry(key);return node != null &&valEquals(node.getValue(), entry.getValue());} // 从EntrySetView中删除Objectpublic boolean remove(Object o) {if (!(o instanceof Map.Entry))return false;Map.Entry<K,V> entry = (Map.Entry<K,V>) o;K key = entry.getKey();if (!inRange(key))return false;TreeMap.Entry<K,V> node = m.getEntry(key);if (node!=null && valEquals(node.getValue(),entry.getValue())){m.deleteEntry(node);return true;}return false;}} // SubMap的迭代器abstract class SubMapIterator<T> implements Iterator<T> {// 上一次被返回的EntryTreeMap.Entry<K,V> lastReturned;// 指向下一个EntryTreeMap.Entry<K,V> next;// “栅栏key”。根据SubMap是“升序”还是“降序”具有不同的意义final K fenceKey;int expectedModCount; // 构造函数SubMapIterator(TreeMap.Entry<K,V> first, TreeMap.Entry<K,V> fence) {// 每创建一个SubMapIterator时,保存修改次数// 若后面发现expectedModCount和modCount不相等,则抛出ConcurrentModificationException异常。// 这就是所说的fast-fail机制的原理!expectedModCount = m.modCount;lastReturned = null;next = first;fenceKey = fence == null ? null : fence.key;} // 是否存在下一个Entrypublic final boolean hasNext() {return next != null && next.key != fenceKey;} // 返回下一个Entryfinal TreeMap.Entry<K,V> nextEntry() {TreeMap.Entry<K,V> e = next;if (e == null || e.key == fenceKey)throw new NoSuchElementException();if (m.modCount != expectedModCount)throw new ConcurrentModificationException();// next指向e的后继节点next = successor(e);lastReturned = e;return e;} // 返回上一个Entryfinal TreeMap.Entry<K,V> prevEntry() {TreeMap.Entry<K,V> e = next;if (e == null || e.key == fenceKey)throw new NoSuchElementException();if (m.modCount != expectedModCount)throw new ConcurrentModificationException();// next指向e的前继节点next = predecessor(e);lastReturned = e;return e;} // 删除当前节点(用于“升序的SubMap”)。// 删除之后,可以继续升序遍历;红黑树特性没变。final void removeAscending() {if (lastReturned == null)throw new IllegalStateException();if (m.modCount != expectedModCount)throw new ConcurrentModificationException();// 这里重点强调一下“为什么当lastReturned的左右孩子都不为空时,要将其赋值给next”。// 目的是为了“删除lastReturned节点之后,next节点指向的仍然是下一个节点”。// 根据“红黑树”的特性可知:// 当被删除节点有两个儿子时。那么,首先把“它的后继节点的内容”复制给“该节点的内容”;之后,删除“它的后继节点”。// 这意味着“当被删除节点有两个儿子时,删除当前节点之后,"新的当前节点"实际上是‘原有的后继节点(即下一个节点)’”。// 而此时next仍然指向"新的当前节点"。也就是说next是仍然是指向下一个节点;能继续遍历红黑树。if (lastReturned.left != null && lastReturned.right != null)next = lastReturned;m.deleteEntry(lastReturned);lastReturned = null;expectedModCount = m.modCount;} // 删除当前节点(用于“降序的SubMap”)。// 删除之后,可以继续降序遍历;红黑树特性没变。final void removeDescending() {if (lastReturned == null)throw new IllegalStateException();if (m.modCount != expectedModCount)throw new ConcurrentModificationException();m.deleteEntry(lastReturned);lastReturned = null;expectedModCount = m.modCount;} } // SubMap的Entry迭代器,它只支持升序操作,继承于SubMapIteratorfinal class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {SubMapEntryIterator(TreeMap.Entry<K,V> first,TreeMap.Entry<K,V> fence) {super(first, fence);}// 获取下一个节点(升序)public Map.Entry<K,V> next() {return nextEntry();}// 删除当前节点(升序)public void remove() {removeAscending();}} // SubMap的Key迭代器,它只支持升序操作,继承于SubMapIteratorfinal class SubMapKeyIterator extends SubMapIterator<K> {SubMapKeyIterator(TreeMap.Entry<K,V> first,TreeMap.Entry<K,V> fence) {super(first, fence);}// 获取下一个节点(升序)public K next() {return nextEntry().key;}// 删除当前节点(升序)public void remove() {removeAscending();}} // 降序SubMap的Entry迭代器,它只支持降序操作,继承于SubMapIteratorfinal class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {DescendingSubMapEntryIterator(TreeMap.Entry<K,V> last,TreeMap.Entry<K,V> fence) {super(last, fence);} // 获取下一个节点(降序)public Map.Entry<K,V> next() {return prevEntry();}// 删除当前节点(降序)public void remove() {removeDescending();}} // 降序SubMap的Key迭代器,它只支持降序操作,继承于SubMapIteratorfinal class DescendingSubMapKeyIterator extends SubMapIterator<K> {DescendingSubMapKeyIterator(TreeMap.Entry<K,V> last,TreeMap.Entry<K,V> fence) {super(last, fence);}// 获取下一个节点(降序)public K next() {return prevEntry().key;}// 删除当前节点(降序)public void remove() {removeDescending();}}}// 升序的SubMap,继承于NavigableSubMapstatic final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {private static final long serialVersionUID = 912986545866124060L; // 构造函数AscendingSubMap(TreeMap<K,V> m,boolean fromStart, K lo, boolean loInclusive,boolean toEnd, K hi, boolean hiInclusive) {super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);} // 比较器public Comparator<? super K> comparator() {return m.comparator();} // 获取“子Map”。// 范围是从fromKey 到 toKey;fromInclusive是是否包含fromKey的标记,toInclusive是是否包含toKey的标记public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,K toKey, boolean toInclusive) {if (!inRange(fromKey, fromInclusive))throw new IllegalArgumentException("fromKey out of range");if (!inRange(toKey, toInclusive))throw new IllegalArgumentException("toKey out of range");return new AscendingSubMap(m, false, fromKey, fromInclusive, false, toKey, toInclusive);} // 获取“Map的头部”。// 范围从第一个节点 到 toKey, inclusive是是否包含toKey的标记public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {if (!inRange(toKey, inclusive))throw new IllegalArgumentException("toKey out of range");return new AscendingSubMap(m, fromStart, lo,loInclusive, false, toKey, inclusive);} // 获取“Map的尾部”。// 范围是从 fromKey 到 最后一个节点,inclusive是是否包含fromKey的标记public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){if (!inRange(fromKey, inclusive))throw new IllegalArgumentException("fromKey out of range");return new AscendingSubMap(m, false, fromKey, inclusive, toEnd, hi,hiInclusive);} // 获取对应的降序Mappublic NavigableMap<K,V> descendingMap() {NavigableMap<K,V> mv = descendingMapView;return (mv != null) ? mv :(descendingMapView = new DescendingSubMap(m,fromStart, lo, loInclusive,toEnd, hi, hiInclusive));} // 返回“升序Key迭代器”Iterator<K> keyIterator() {return new SubMapKeyIterator(absLowest(), absHighFence());} // 返回“降序Key迭代器”Iterator<K> descendingKeyIterator() {return new DescendingSubMapKeyIterator(absHighest(), absLowFence());} // “升序EntrySet集合”类// 实现了iterator()final class AscendingEntrySetView extends EntrySetView {public Iterator<Map.Entry<K,V>> iterator() {return new SubMapEntryIterator(absLowest(), absHighFence());}} // 返回“升序EntrySet集合”public Set<Map.Entry<K,V>> entrySet() {EntrySetView es = entrySetView;return (es != null) ? es : new AscendingEntrySetView();} TreeMap.Entry<K,V> subLowest() { return absLowest(); }TreeMap.Entry<K,V> subHighest(){ return absHighest(); }TreeMap.Entry<K,V> subCeiling(K key) { return absCeiling(key); }TreeMap.Entry<K,V> subHigher(K key){ return absHigher(key); }TreeMap.Entry<K,V> subFloor(K key) { return absFloor(key); }TreeMap.Entry<K,V> subLower(K key) { return absLower(key); }} // 降序的SubMap,继承于NavigableSubMap// 相比于升序SubMap,它的实现机制是将“SubMap的比较器反转”!static final class DescendingSubMap<K,V>extends NavigableSubMap<K,V> {private static final long serialVersionUID = 912986545866120460L;DescendingSubMap(TreeMap<K,V> m,boolean fromStart, K lo, boolean loInclusive,boolean toEnd, K hi, boolean hiInclusive) {super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);} // 反转的比较器:是将原始比较器反转得到的。private final Comparator<? super K> reverseComparator =Collections.reverseOrder(m.comparator); // 获取反转比较器public Comparator<? super K> comparator() {return reverseComparator;} // 获取“子Map”。// 范围是从fromKey 到 toKey;fromInclusive是是否包含fromKey的标记,toInclusive是是否包含toKey的标记public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,K toKey, boolean toInclusive) {if (!inRange(fromKey, fromInclusive))throw new IllegalArgumentException("fromKey out of range");if (!inRange(toKey, toInclusive))throw new IllegalArgumentException("toKey out of range");return new DescendingSubMap(m,false, toKey, toInclusive,false, fromKey, fromInclusive);} // 获取“Map的头部”。// 范围从第一个节点 到 toKey, inclusive是是否包含toKey的标记public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {if (!inRange(toKey, inclusive))throw new IllegalArgumentException("toKey out of range");return new DescendingSubMap(m,false, toKey, inclusive,toEnd, hi,hiInclusive);} // 获取“Map的尾部”。// 范围是从 fromKey 到 最后一个节点,inclusive是是否包含fromKey的标记public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive){if (!inRange(fromKey, inclusive))throw new IllegalArgumentException("fromKey out of range");return new DescendingSubMap(m,fromStart, lo, loInclusive,false, fromKey, inclusive);} // 获取对应的降序Mappublic NavigableMap<K,V> descendingMap() {NavigableMap<K,V> mv = descendingMapView;return (mv != null) ? mv :(descendingMapView = new AscendingSubMap(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive));} // 返回“升序Key迭代器”Iterator<K> keyIterator() {return new DescendingSubMapKeyIterator(absHighest(), absLowFence());} // 返回“降序Key迭代器”Iterator<K> descendingKeyIterator() {return new SubMapKeyIterator(absLowest(), absHighFence());} // “降序EntrySet集合”类// 实现了iterator()final class DescendingEntrySetView extends EntrySetView {public Iterator<Map.Entry<K,V>> iterator() {return new DescendingSubMapEntryIterator(absHighest(), absLowFence());}} // 返回“降序EntrySet集合”public Set<Map.Entry<K,V>> entrySet() {EntrySetView es = entrySetView;return (es != null) ? es : new DescendingEntrySetView();} TreeMap.Entry<K,V> subLowest() { return absHighest(); }TreeMap.Entry<K,V> subHighest(){ return absLowest(); }TreeMap.Entry<K,V> subCeiling(K key) { return absFloor(key); }TreeMap.Entry<K,V> subHigher(K key){ return absLower(key); }TreeMap.Entry<K,V> subFloor(K key) { return absCeiling(key); }TreeMap.Entry<K,V> subLower(K key) { return absHigher(key); }} // SubMap是旧版本的类,新的Java中没有用到。private class SubMap extends AbstractMap<K,V>implements SortedMap<K,V>, java.io.Serializable {private static final long serialVersionUID = -6520786458950516097L;private boolean fromStart = false, toEnd = false;private K fromKey, toKey;private Object readResolve() {return new AscendingSubMap(TreeMap.this, fromStart, fromKey, true, toEnd, toKey, false);}public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); }public K lastKey() { throw new InternalError(); }public K firstKey() { throw new InternalError(); }public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }public Comparator<? super K> comparator() { throw new InternalError(); }}// 红黑树的节点颜色--红色private static final boolean RED = false;// 红黑树的节点颜色--黑色private static final boolean BLACK = true; // “红黑树的节点”对应的类。// 包含了 key(键)、value(值)、left(左孩子)、right(右孩子)、parent(父节点)、color(颜色)static final class Entry<K,V> implements Map.Entry<K,V> {// 键K key;// 值V value;// 左孩子Entry<K,V> left = null;// 右孩子Entry<K,V> right = null;// 父节点Entry<K,V> parent;// 当前节点颜色boolean color = BLACK; // 构造函数Entry(K key, V value, Entry<K,V> parent) {this.key = key;this.value = value;this.parent = parent;} // 返回“键”public K getKey() {return key;} // 返回“值”public V getValue() {return value;} // 更新“值”,返回旧的值public V setValue(V value) {V oldValue = this.value;this.value = value;return oldValue;} // 判断两个节点是否相等的函数,覆盖equals()函数。// 若两个节点的“key相等”并且“value相等”,则两个节点相等public boolean equals(Object o) {if (!(o instanceof Map.Entry))return false;Map.Entry<?,?> e = (Map.Entry<?,?>)o; return valEquals(key,e.getKey()) && valEquals(value,e.getValue());} // 覆盖hashCode函数。public int hashCode() {int keyHash = (key==null ? 0 : key.hashCode());int valueHash = (value==null ? 0 : value.hashCode());return keyHash ^ valueHash;} // 覆盖toString()函数。public String toString() {return key + "=" + value;}} // 返回“红黑树的第一个节点”final Entry<K,V> getFirstEntry() {Entry<K,V> p = root;if (p != null)while (p.left != null)p = p.left;return p;} // 返回“红黑树的最后一个节点”final Entry<K,V> getLastEntry() {Entry<K,V> p = root;if (p != null)while (p.right != null)p = p.right;return p;} // 返回“节点t的后继节点”static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {if (t == null)return null;else if (t.right != null) {Entry<K,V> p = t.right;while (p.left != null)p = p.left;return p;} else {Entry<K,V> p = t.parent;Entry<K,V> ch = t;while (p != null && ch == p.right) {ch = p;p = p.parent;}return p;}} // 返回“节点t的前继节点”static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {if (t == null)return null;else if (t.left != null) {Entry<K,V> p = t.left;while (p.right != null)p = p.right;return p;} else {Entry<K,V> p = t.parent;Entry<K,V> ch = t;while (p != null && ch == p.left) {ch = p;p = p.parent;}return p;}} // 返回“节点p的颜色”// 根据“红黑树的特性”可知:空节点颜色是黑色。private static <K,V> boolean colorOf(Entry<K,V> p) {return (p == null ? BLACK : p.color);} // 返回“节点p的父节点”private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) {return (p == null ? null: p.parent);} // 设置“节点p的颜色为c”private static <K,V> void setColor(Entry<K,V> p, boolean c) {if (p != null)p.color = c;} // 设置“节点p的左孩子”private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) {return (p == null) ? null: p.left;} // 设置“节点p的右孩子”private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) {return (p == null) ? null: p.right;} // 对节点p执行“左旋”操作private void rotateLeft(Entry<K,V> p) {if (p != null) {Entry<K,V> r = p.right;p.right = r.left;if (r.left != null)r.left.parent = p;r.parent = p.parent;if (p.parent == null)root = r;else if (p.parent.left == p)p.parent.left = r;elsep.parent.right = r;r.left = p;p.parent = r;}} // 对节点p执行“右旋”操作private void rotateRight(Entry<K,V> p) {if (p != null) {Entry<K,V> l = p.left;p.left = l.right;if (l.right != null) l.right.parent = p;l.parent = p.parent;if (p.parent == null)root = l;else if (p.parent.right == p)p.parent.right = l;else p.parent.left = l;l.right = p;p.parent = l;}} // 插入之后的修正操作。// 目的是保证:红黑树插入节点之后,仍然是一颗红黑树private void fixAfterInsertion(Entry<K,V> x) {x.color = RED; while (x != null && x != root && x.parent.color == RED) {if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {Entry<K,V> y = rightOf(parentOf(parentOf(x)));if (colorOf(y) == RED) {setColor(parentOf(x), BLACK);setColor(y, BLACK);setColor(parentOf(parentOf(x)), RED);x = parentOf(parentOf(x));} else {if (x == rightOf(parentOf(x))) {x = parentOf(x);rotateLeft(x);}setColor(parentOf(x), BLACK);setColor(parentOf(parentOf(x)), RED);rotateRight(parentOf(parentOf(x)));}} else {Entry<K,V> y = leftOf(parentOf(parentOf(x)));if (colorOf(y) == RED) {setColor(parentOf(x), BLACK);setColor(y, BLACK);setColor(parentOf(parentOf(x)), RED);x = parentOf(parentOf(x));} else {if (x == leftOf(parentOf(x))) {x = parentOf(x);rotateRight(x);}setColor(parentOf(x), BLACK);setColor(parentOf(parentOf(x)), RED);rotateLeft(parentOf(parentOf(x)));}}}root.color = BLACK;} // 删除“红黑树的节点p”private void deleteEntry(Entry<K,V> p) {modCount++;size--; // If strictly internal, copy successor"s element to p and then make p// point to successor.if (p.left != null && p.right != null) {Entry<K,V> s = successor (p);p.key = s.key;p.value = s.value;p = s;} // p has 2 children // Start fixup at replacement node, if it exists.Entry<K,V> replacement = (p.left != null ? p.left : p.right); if (replacement != null) {// Link replacement to parentreplacement.parent = p.parent;if (p.parent == null)root = replacement;else if (p == p.parent.left)p.parent.left= replacement;elsep.parent.right = replacement; // Null out links so they are OK to use by fixAfterDeletion.p.left = p.right = p.parent = null; // Fix replacementif (p.color == BLACK)fixAfterDeletion(replacement);} else if (p.parent == null) { // return if we are the only node.root = null;} else { //No children. Use self as phantom replacement and unlink.if (p.color == BLACK)fixAfterDeletion(p); if (p.parent != null) {if (p == p.parent.left)p.parent.left = null;else if (p == p.parent.right)p.parent.right = null;p.parent = null;}}} // 删除之后的修正操作。// 目的是保证:红黑树删除节点之后,仍然是一颗红黑树private void fixAfterDeletion(Entry<K,V> x) {while (x != root && colorOf(x) == BLACK) {if (x == leftOf(parentOf(x))) {Entry<K,V> sib = rightOf(parentOf(x)); if (colorOf(sib) == RED) {setColor(sib, BLACK);setColor(parentOf(x), RED);rotateLeft(parentOf(x));sib = rightOf(parentOf(x));} if (colorOf(leftOf(sib))== BLACK &&colorOf(rightOf(sib)) == BLACK) {setColor(sib, RED);x = parentOf(x);} else {if (colorOf(rightOf(sib)) == BLACK) {setColor(leftOf(sib), BLACK);setColor(sib, RED);rotateRight(sib);sib = rightOf(parentOf(x));}setColor(sib, colorOf(parentOf(x)));setColor(parentOf(x), BLACK);setColor(rightOf(sib), BLACK);rotateLeft(parentOf(x));x = root;}} else { // symmetricEntry<K,V> sib = leftOf(parentOf(x)); if (colorOf(sib) == RED) {setColor(sib, BLACK);setColor(parentOf(x), RED);rotateRight(parentOf(x));sib = leftOf(parentOf(x));} if (colorOf(rightOf(sib)) == BLACK &&colorOf(leftOf(sib)) == BLACK) {setColor(sib, RED);x = parentOf(x);} else {if (colorOf(leftOf(sib)) == BLACK) {setColor(rightOf(sib), BLACK);setColor(sib, RED);rotateLeft(sib);sib = leftOf(parentOf(x));}setColor(sib, colorOf(parentOf(x)));setColor(parentOf(x), BLACK);setColor(leftOf(sib), BLACK);rotateRight(parentOf(x));x = root;}}} setColor(x, BLACK);} private static final long serialVersionUID = 919286545866124006L; // java.io.Serializable的写入函数// 将TreeMap的“容量,所有的Entry”都写入到输出流中private void writeObject(java.io.ObjectOutputStream s)throws java.io.IOException {// Write out the Comparator and any hidden stuffs.defaultWriteObject(); // Write out size (number of Mappings)s.writeInt(size); // Write out keys and values (alternating)for (Iterator<Map.Entry<K,V>> i = entrySet().iterator(); i.hasNext(); ) {Map.Entry<K,V> e = i.next();s.writeObject(e.getKey());s.writeObject(e.getValue());}}// java.io.Serializable的读取函数:根据写入方式读出// 先将TreeMap的“容量、所有的Entry”依次读出private void readObject(final java.io.ObjectInputStream s)throws java.io.IOException, ClassNotFoundException {// Read in the Comparator and any hidden stuffs.defaultReadObject(); // Read in sizeint size = s.readInt(); buildFromSorted(size, null, s, null);} // 根据已经一个排好序的map创建一个TreeMapprivate void buildFromSorted(int size, Iterator it, java.io.ObjectInputStream str, V defaultVal)throwsjava.io.IOException, ClassNotFoundException {this.size = size;root = buildFromSorted(0, 0, size-1, computeRedLevel(size), it, str, defaultVal);} // 根据已经一个排好序的map创建一个TreeMap// 将map中的元素逐个添加到TreeMap中,并返回