Welcome 微信登录

首页 / 软件开发 / JAVA / Java集合学习(十一) Hashtable详细介绍(源码解析)和使用示例

Java集合学习(十一) Hashtable详细介绍(源码解析)和使用示例2014-08-03这一章,我们对Hashtable进行学习。
我们先对Hashtable有个整体认识,然后再学习它的源码,最后再通过实例来学会使用Hashtable。

第1部分 Hashtable介绍

Hashtable 简介

和HashMap一样,Hashtable 也是一个散列表,它存储的内容是键值对(key-value)映射。
Hashtable 继承于Dictionary,实现了Map、Cloneable、java.io.Serializable接口。
Hashtable 的函数都是同步的,这意味着它是线程安全的。它的key、value都可以为null。此外,Hashtable中的映射不是有序的。

Hashtable 的实例有两个参数影响其性能:初始容量 和 加载因子。容量 是哈希表中桶 的数量,初始容量 就是哈希表创建时的容量。注意,哈希表的状态为 open:在发生“哈希冲突”的情况下,单个桶会存储多个条目,这些条目必须按顺序搜索。加载因子 是对哈希表在其容量自动增加之前可以达到多满的一个尺度。初始容量和加载因子这两个参数只是对该实现的提示。关于何时以及是否调用 rehash 方法的具体细节则依赖于该实现。
通常,默认加载因子是 0.75, 这是在时间和空间成本上寻求一种折衷。加载因子过高虽然减少了空间开销,但同时也增加了查找某个条目的时间(在大多数 Hashtable 操作中,包括 get 和 put 操作,都反映了这一点)。

Hashtable的继承关系

java.lang.Object
      java.util.Dictionary<K, V>
            java.util.Hashtable<K, V>

public class Hashtable<K,V> extends Dictionary<K,V>
   implements Map<K,V>, Cloneable, java.io.Serializable { }

Hashtable与Map关系如下图:

Hashtable的构造函数

// 默认构造函数。public Hashtable()// 指定“容量大小”的构造函数public Hashtable(int initialCapacity)// 指定“容量大小”和“加载因子”的构造函数public Hashtable(int initialCapacity, float loadFactor)// 包含“子Map”的构造函数public Hashtable(Map<? extends K, ? extends V> t)
Hashtable的API

synchronized voidclear()synchronized Objectclone() boolean contains(Object value)synchronized boolean containsKey(Object key)synchronized boolean containsValue(Object value)synchronized Enumeration<V>elements()synchronized Set<Entry<K, V>>entrySet()synchronized boolean equals(Object object)synchronized V get(Object key)synchronized int hashCode()synchronized boolean isEmpty()synchronized Set<K>keySet()synchronized Enumeration<K>keys()synchronized V put(K key, V value)synchronized voidputAll(Map<? extends K, ? extends V> map)synchronized V remove(Object key)synchronized int size()synchronized StringtoString()synchronized Collection<V> values()

第2部分 Hashtable源码解析

为了更了解Hashtable的原理,下面对Hashtable源码代码作出分析。
在阅读源码时,建议参考后面的说明来建立对Hashtable的整体认识,这样更容易理解Hashtable。

package java.util;import java.io.*; public class Hashtable<K,V>extends Dictionary<K,V>implements Map<K,V>, Cloneable, java.io.Serializable { // Hashtable保存key-value的数组。// Hashtable是采用拉链法实现的,每一个Entry本质上是一个单向链表private transient Entry[] table; // Hashtable中元素的实际数量private transient int count; // 阈值,用于判断是否需要调整Hashtable的容量(threshold = 容量*加载因子)private int threshold; // 加载因子private float loadFactor; // Hashtable被改变的次数private transient int modCount = 0; // 序列版本号private static final long serialVersionUID = 1421746759512286392L; // 指定“容量大小”和“加载因子”的构造函数public Hashtable(int initialCapacity, float loadFactor) {if (initialCapacity < 0)throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity);if (loadFactor <= 0 || Float.isNaN(loadFactor))throw new IllegalArgumentException("Illegal Load: "+loadFactor); if (initialCapacity==0)initialCapacity = 1;this.loadFactor = loadFactor;table = new Entry[initialCapacity];threshold = (int)(initialCapacity * loadFactor);} // 指定“容量大小”的构造函数public Hashtable(int initialCapacity) {this(initialCapacity, 0.75f);} // 默认构造函数。public Hashtable() {// 默认构造函数,指定的容量大小是11;加载因子是0.75this(11, 0.75f);} // 包含“子Map”的构造函数public Hashtable(Map<? extends K, ? extends V> t) {this(Math.max(2*t.size(), 11), 0.75f);// 将“子Map”的全部元素都添加到Hashtable中putAll(t);} public synchronized int size() {return count;} public synchronized boolean isEmpty() {return count == 0;} // 返回“所有key”的枚举对象public synchronized Enumeration<K> keys() {return this.<K>getEnumeration(KEYS);} // 返回“所有value”的枚举对象public synchronized Enumeration<V> elements() {return this.<V>getEnumeration(VALUES);} // 判断Hashtable是否包含“值(value)”public synchronized boolean contains(Object value) {// Hashtable中“键值对”的value不能是null,// 若是null的话,抛出异常!if (value == null) {throw new NullPointerException();} // 从后向前遍历table数组中的元素(Entry)// 对于每个Entry(单向链表),逐个遍历,判断节点的值是否等于valueEntry tab[] = table;for (int i = tab.length ; i-- > 0 ;) {for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) {if (e.value.equals(value)) {return true;}}}return false;} public boolean containsValue(Object value) {return contains(value);} // 判断Hashtable是否包含keypublic synchronized boolean containsKey(Object key) {Entry tab[] = table;int hash = key.hashCode();// 计算索引值,// % tab.length 的目的是防止数据越界int index = (hash & 0x7FFFFFFF) % tab.length;// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {if ((e.hash == hash) && e.key.equals(key)) {return true;}}return false;} // 返回key对应的value,没有的话返回nullpublic synchronized V get(Object key) {Entry tab[] = table;int hash = key.hashCode();// 计算索引值,int index = (hash & 0x7FFFFFFF) % tab.length;// 找到“key对应的Entry(链表)”,然后在链表中找出“哈希值”和“键值”与key都相等的元素for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {if ((e.hash == hash) && e.key.equals(key)) {return e.value;}}return null;} // 调整Hashtable的长度,将长度变成原来的(2倍+1)// (01) 将“旧的Entry数组”赋值给一个临时变量。// (02) 创建一个“新的Entry数组”,并赋值给“旧的Entry数组”// (03) 将“Hashtable”中的全部元素依次添加到“新的Entry数组”中protected void rehash() {int oldCapacity = table.length;Entry[] oldMap = table; int newCapacity = oldCapacity * 2 + 1;Entry[] newMap = new Entry[newCapacity]; modCount++;threshold = (int)(newCapacity * loadFactor);table = newMap; for (int i = oldCapacity ; i-- > 0 ;) {for (Entry<K,V> old = oldMap[i] ; old != null ; ) {Entry<K,V> e = old;old = old.next; int index = (e.hash & 0x7FFFFFFF) % newCapacity;e.next = newMap[index];newMap[index] = e;}}} // 将“key-value”添加到Hashtable中public synchronized V put(K key, V value) {// Hashtable中不能插入value为null的元素!!!if (value == null) {throw new NullPointerException();} // 若“Hashtable中已存在键为key的键值对”,// 则用“新的value”替换“旧的value”Entry tab[] = table;int hash = key.hashCode();int index = (hash & 0x7FFFFFFF) % tab.length;for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {if ((e.hash == hash) && e.key.equals(key)) {V old = e.value;e.value = value;return old;}} // 若“Hashtable中不存在键为key的键值对”,// (01) 将“修改统计数”+1modCount++;// (02) 若“Hashtable实际容量” > “阈值”(阈值=总的容量 * 加载因子)//则调整Hashtable的大小if (count >= threshold) {// Rehash the table if the threshold is exceededrehash(); tab = table;index = (hash & 0x7FFFFFFF) % tab.length;} // (03) 将“Hashtable中index”位置的Entry(链表)保存到e中Entry<K,V> e = tab[index];// (04) 创建“新的Entry节点”,并将“新的Entry”插入“Hashtable的index位置”,并设置e为“新的Entry”的下一个元素(即“新Entry”为链表表头)。tab[index] = new Entry<K,V>(hash, key, value, e);// (05) 将“Hashtable的实际容量”+1count++;return null;} // 删除Hashtable中键为key的元素public synchronized V remove(Object key) {Entry tab[] = table;int hash = key.hashCode();int index = (hash & 0x7FFFFFFF) % tab.length;// 找到“key对应的Entry(链表)”// 然后在链表中找出要删除的节点,并删除该节点。for (Entry<K,V> e = tab[index], prev = null ; e != null ; prev = e, e = e.next) {if ((e.hash == hash) && e.key.equals(key)) {modCount++;if (prev != null) {prev.next = e.next;} else {tab[index] = e.next;}count--;V oldValue = e.value;e.value = null;return oldValue;}}return null;} // 将“Map(t)”的中全部元素逐一添加到Hashtable中public synchronized void putAll(Map<? extends K, ? extends V> t) {for (Map.Entry<? extends K, ? extends V> e : t.entrySet())put(e.getKey(), e.getValue());} // 清空Hashtable// 将Hashtable的table数组的值全部设为nullpublic synchronized void clear() {Entry tab[] = table;modCount++;for (int index = tab.length; --index >= 0; )tab[index] = null;count = 0;} // 克隆一个Hashtable,并以Object的形式返回。public synchronized Object clone() {try {Hashtable<K,V> t = (Hashtable<K,V>) super.clone();t.table = new Entry[table.length];for (int i = table.length ; i-- > 0 ; ) {t.table[i] = (table[i] != null)? (Entry<K,V>) table[i].clone() : null;}t.keySet = null;t.entrySet = null;t.values = null;t.modCount = 0;return t;} catch (CloneNotSupportedException e) {// this shouldn"t happen, since we are Cloneablethrow new InternalError();}} public synchronized String toString() {int max = size() - 1;if (max == -1)return "{}"; StringBuilder sb = new StringBuilder();Iterator<Map.Entry<K,V>> it = entrySet().iterator(); sb.append("{");for (int i = 0; ; i++) {Map.Entry<K,V> e = it.next();K key = e.getKey();V value = e.getValue();sb.append(key == this ? "(this Map)" : key.toString());sb.append("=");sb.append(value == this ? "(this Map)" : value.toString()); if (i == max)return sb.append("}").toString();sb.append(", ");}} // 获取Hashtable的枚举类对象// 若Hashtable的实际大小为0,则返回“空枚举类”对象;// 否则,返回正常的Enumerator的对象。(Enumerator实现了迭代器和枚举两个接口)private <T> Enumeration<T> getEnumeration(int type) {if (count == 0) {return (Enumeration<T>)emptyEnumerator;} else {return new Enumerator<T>(type, false);}} // 获取Hashtable的迭代器// 若Hashtable的实际大小为0,则返回“空迭代器”对象;// 否则,返回正常的Enumerator的对象。(Enumerator实现了迭代器和枚举两个接口)private <T> Iterator<T> getIterator(int type) {if (count == 0) {return (Iterator<T>) emptyIterator;} else {return new Enumerator<T>(type, true);}} // Hashtable的“key的集合”。它是一个Set,意味着没有重复元素private transient volatile Set<K> keySet = null;// Hashtable的“key-value的集合”。它是一个Set,意味着没有重复元素private transient volatile Set<Map.Entry<K,V>> entrySet = null;// Hashtable的“key-value的集合”。它是一个Collection,意味着可以有重复元素private transient volatile Collection<V> values = null; // 返回一个被synchronizedSet封装后的KeySet对象// synchronizedSet封装的目的是对KeySet的所有方法都添加synchronized,实现多线程同步public Set<K> keySet() {if (keySet == null)keySet = Collections.synchronizedSet(new KeySet(), this);return keySet;} // Hashtable的Key的Set集合。// KeySet继承于AbstractSet,所以,KeySet中的元素没有重复的。private class KeySet extends AbstractSet<K> {public Iterator<K> iterator() {return getIterator(KEYS);}public int size() {return count;}public boolean contains(Object o) {return containsKey(o);}public boolean remove(Object o) {return Hashtable.this.remove(o) != null;}public void clear() {Hashtable.this.clear();}} // 返回一个被synchronizedSet封装后的EntrySet对象// synchronizedSet封装的目的是对EntrySet的所有方法都添加synchronized,实现多线程同步public Set<Map.Entry<K,V>> entrySet() {if (entrySet==null)entrySet = Collections.synchronizedSet(new EntrySet(), this);return entrySet;} // Hashtable的Entry的Set集合。// EntrySet继承于AbstractSet,所以,EntrySet中的元素没有重复的。private class EntrySet extends AbstractSet<Map.Entry<K,V>> {public Iterator<Map.Entry<K,V>> iterator() {return getIterator(ENTRIES);} public boolean add(Map.Entry<K,V> o) {return super.add(o);} // 查找EntrySet中是否包含Object(0)// 首先,在table中找到o对应的Entry(Entry是一个单向链表)// 然后,查找Entry链表中是否存在Objectpublic boolean contains(Object o) {if (!(o instanceof Map.Entry))return false;Map.Entry entry = (Map.Entry)o;Object key = entry.getKey();Entry[] tab = table;int hash = key.hashCode();int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry e = tab[index]; e != null; e = e.next)if (e.hash==hash && e.equals(entry))return true;return false;} // 删除元素Object(0)// 首先,在table中找到o对应的Entry(Entry是一个单向链表)// 然后,删除链表中的元素Objectpublic boolean remove(Object o) {if (!(o instanceof Map.Entry))return false;Map.Entry<K,V> entry = (Map.Entry<K,V>) o;K key = entry.getKey();Entry[] tab = table;int hash = key.hashCode();int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<K,V> e = tab[index], prev = null; e != null; prev = e, e = e.next) {if (e.hash==hash && e.equals(entry)) {modCount++;if (prev != null)prev.next = e.next;elsetab[index] = e.next; count--;e.value = null;return true;}}return false;} public int size() {return count;} public void clear() {Hashtable.this.clear();}} // 返回一个被synchronizedCollection封装后的ValueCollection对象// synchronizedCollection封装的目的是对ValueCollection的所有方法都添加synchronized,实现多线程同步public Collection<V> values() {if (values==null)values = Collections.synchronizedCollection(new ValueCollection(),this);return values;} // Hashtable的value的Collection集合。// ValueCollection继承于AbstractCollection,所以,ValueCollection中的元素可以重复的。private class ValueCollection extends AbstractCollection<V> {public Iterator<V> iterator() {return getIterator(VALUES);}public int size() {return count;}public boolean contains(Object o) {return containsValue(o);}public void clear() {Hashtable.this.clear();}} // 重新equals()函数// 若两个Hashtable的所有key-value键值对都相等,则判断它们两个相等public synchronized boolean equals(Object o) {if (o == this)return true; if (!(o instanceof Map))return false;Map<K,V> t = (Map<K,V>) o;if (t.size() != size())return false; try {// 通过迭代器依次取出当前Hashtable的key-value键值对// 并判断该键值对,存在于Hashtable(o)中。// 若不存在,则立即返回false;否则,遍历完“当前Hashtable”并返回true。Iterator<Map.Entry<K,V>> i = entrySet().iterator();while (i.hasNext()) {Map.Entry<K,V> e = i.next();K key = e.getKey();V value = e.getValue();if (value == null) {if (!(t.get(key)==null && t.containsKey(key)))return false;} else {if (!value.equals(t.get(key)))return false;}}} catch (ClassCastException unused) {return false;} catch (NullPointerException unused) {return false;} return true;} // 计算Hashtable的哈希值// 若 Hashtable的实际大小为0 或者 加载因子<0,则返回0。// 否则,返回“Hashtable中的每个Entry的key和value的异或值 的总和”。public synchronized int hashCode() {int h = 0;if (count == 0 || loadFactor < 0)return h;// Returns zero loadFactor = -loadFactor;// Mark hashCode computation in progressEntry[] tab = table;for (int i = 0; i < tab.length; i++)for (Entry e = tab[i]; e != null; e = e.next)h += e.key.hashCode() ^ e.value.hashCode();loadFactor = -loadFactor;// Mark hashCode computation complete return h;} // java.io.Serializable的写入函数// 将Hashtable的“总的容量,实际容量,所有的Entry”都写入到输出流中private synchronized void writeObject(java.io.ObjectOutputStream s)throws IOException{// Write out the length, threshold, loadfactors.defaultWriteObject(); // Write out length, count of elements and then the key/value objectss.writeInt(table.length);s.writeInt(count);for (int index = table.length-1; index >= 0; index--) {Entry entry = table[index]; while (entry != null) {s.writeObject(entry.key);s.writeObject(entry.value);entry = entry.next;}}} // java.io.Serializable的读取函数:根据写入方式读出// 将Hashtable的“总的容量,实际容量,所有的Entry”依次读出private void readObject(java.io.ObjectInputStream s) throws IOException, ClassNotFoundException{// Read in the length, threshold, and loadfactors.defaultReadObject(); // Read the original length of the array and number of elementsint origlength = s.readInt();int elements = s.readInt(); // Compute new size with a bit of room 5% to grow but// no larger than the original size.Make the length// odd if it"s large enough, this helps distribute the entries.// Guard against the length ending up zero, that"s not valid.int length = (int)(elements * loadFactor) + (elements / 20) + 3;if (length > elements && (length & 1) == 0)length--;if (origlength > 0 && length > origlength)length = origlength; Entry[] table = new Entry[length];count = 0; // Read the number of elements and then all the key/value objectsfor (; elements > 0; elements--) {K key = (K)s.readObject();V value = (V)s.readObject();// synch could be eliminated for performancereconstitutionPut(table, key, value);}this.table = table;} private void reconstitutionPut(Entry[] tab, K key, V value)throws StreamCorruptedException{if (value == null) {throw new java.io.StreamCorruptedException();}// Makes sure the key is not already in the hashtable.// This should not happen in deserialized version.int hash = key.hashCode();int index = (hash & 0x7FFFFFFF) % tab.length;for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {if ((e.hash == hash) && e.key.equals(key)) {throw new java.io.StreamCorruptedException();}}// Creates the new entry.Entry<K,V> e = tab[index];tab[index] = new Entry<K,V>(hash, key, value, e);count++;} // Hashtable的Entry节点,它本质上是一个单向链表。// 也因此,我们才能推断出Hashtable是由拉链法实现的散列表private static class Entry<K,V> implements Map.Entry<K,V> {// 哈希值int hash;K key;V value;// 指向的下一个Entry,即链表的下一个节点Entry<K,V> next; // 构造函数protected Entry(int hash, K key, V value, Entry<K,V> next) {this.hash = hash;this.key = key;this.value = value;this.next = next;} protected Object clone() {return new Entry<K,V>(hash, key, value,(next==null ? null : (Entry<K,V>) next.clone()));} public K getKey() {return key;} public V getValue() {return value;} // 设置value。若value是null,则抛出异常。public V setValue(V value) {if (value == null)throw new NullPointerException(); V oldValue = this.value;this.value = value;return oldValue;} // 覆盖equals()方法,判断两个Entry是否相等。// 若两个Entry的key和value都相等,则认为它们相等。public boolean equals(Object o) {if (!(o instanceof Map.Entry))return false;Map.Entry e = (Map.Entry)o; return (key==null ? e.getKey()==null : key.equals(e.getKey())) && (value==null ? e.getValue()==null : value.equals(e.getValue()));} public int hashCode() {return hash ^ (value==null ? 0 : value.hashCode());} public String toString() {return key.toString()+"="+value.toString();}} private static final int KEYS = 0;private static final int VALUES = 1;private static final int ENTRIES = 2; // Enumerator的作用是提供了“通过elements()遍历Hashtable的接口” 和 “通过entrySet()遍历Hashtable的接口”。因为,它同时实现了 “Enumerator接口”和“Iterator接口”。private class Enumerator<T> implements Enumeration<T>, Iterator<T> {// 指向Hashtable的tableEntry[] table = Hashtable.this.table;// Hashtable的总的大小int index = table.length;Entry<K,V> entry = null;Entry<K,V> lastReturned = null;int type; // Enumerator是 “迭代器(Iterator)” 还是 “枚举类(Enumeration)”的标志// iterator为true,表示它是迭代器;否则,是枚举类。boolean iterator; // 在将Enumerator当作迭代器使用时会用到,用来实现fail-fast机制。protected int expectedModCount = modCount; Enumerator(int type, boolean iterator) {this.type = type;this.iterator = iterator;} // 从遍历table的数组的末尾向前查找,直到找到不为null的Entry。public boolean hasMoreElements() {Entry<K,V> e = entry;int i = index;Entry[] t = table;/* Use locals for faster loop iteration */while (e == null && i > 0) {e = t[--i];}entry = e;index = i;return e != null;} // 获取下一个元素// 注意:从hasMoreElements() 和nextElement() 可以看出“Hashtable的elements()遍历方式”// 首先,从后向前的遍历table数组。table数组的每个节点都是一个单向链表(Entry)。// 然后,依次向后遍历单向链表Entry。public T nextElement() {Entry<K,V> et = entry;int i = index;Entry[] t = table;/* Use locals for faster loop iteration */while (et == null && i > 0) {et = t[--i];}entry = et;index = i;if (et != null) {Entry<K,V> e = lastReturned = entry;entry = e.next;return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);}throw new NoSuchElementException("Hashtable Enumerator");} // 迭代器Iterator的判断是否存在下一个元素// 实际上,它是调用的hasMoreElements()public boolean hasNext() {return hasMoreElements();} // 迭代器获取下一个元素// 实际上,它是调用的nextElement()public T next() {if (modCount != expectedModCount)throw new ConcurrentModificationException();return nextElement();} // 迭代器的remove()接口。// 首先,它在table数组中找出要删除元素所在的Entry,// 然后,删除单向链表Entry中的元素。public void remove() {if (!iterator)throw new UnsupportedOperationException();if (lastReturned == null)throw new IllegalStateException("Hashtable Enumerator");if (modCount != expectedModCount)throw new ConcurrentModificationException(); synchronized(Hashtable.this) {Entry[] tab = Hashtable.this.table;int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length; for (Entry<K,V> e = tab[index], prev = null; e != null; prev = e, e = e.next) {if (e == lastReturned) {modCount++;expectedModCount++;if (prev == null)tab[index] = e.next;elseprev.next = e.next;count--;lastReturned = null;return;}}throw new ConcurrentModificationException();}}}private static Enumeration emptyEnumerator = new EmptyEnumerator();private static Iterator emptyIterator = new EmptyIterator(); // 空枚举类// 当Hashtable的实际大小为0;此时,又要通过Enumeration遍历Hashtable时,返回的是“空枚举类”的对象。private static class EmptyEnumerator implements Enumeration<Object> { EmptyEnumerator() {} // 空枚举类的hasMoreElements() 始终返回falsepublic boolean hasMoreElements() {return false;} // 空枚举类的nextElement() 抛出异常public Object nextElement() {throw new NoSuchElementException("Hashtable Enumerator");}}// 空迭代器// 当Hashtable的实际大小为0;此时,又要通过迭代器遍历Hashtable时,返回的是“空迭代器”的对象。private static class EmptyIterator implements Iterator<Object> { EmptyIterator() {} public boolean hasNext() {return false;} public Object next() {throw new NoSuchElementException("Hashtable Iterator");} public void remove() {throw new IllegalStateException("Hashtable Iterator");} }}
说明: