Welcome

首页 / 软件开发 / C语言 / 数据结构-二分查找树(C描述)

数据结构-二分查找树(C描述)2010-05-06 本站整理 tree.h
typedef int ElementType;
#ifndef TREE_H_INCLUDED
#define TREE_H_INCLUDED
struct TreeNode;
typedef struct TreeNode *Position;
typedef struct TreeNode *SearchTree;
SearchTree MakeEmpty(SearchTree T);
Position Find(ElementType X, SearchTree T);
Position FindMin(SearchTree T);
Position FindMax(SearchTree T);
SearchTree Insert(ElementType X, SearchTree T);
SearchTree Delete(ElementType X, SearchTree T);
ElementType Retrieve(Position P);
#endif // TREE_H_INCLUDED

fatal.h
#ifndef FATAL_H_INCLUDED
#define FATAL_H_INCLUDED
#include <stdio.h>
#include <stdlib.h>
#define Error(Str) FatalError(Str)
#define FatalError(Str) fprintf(stderr, "%s ", Str), exit(1)
#endif // FATAL_H_INCLUDED

tree.c
#include "tree.h"
#include "fatal.h"
struct TreeNode
{
ElementType Element;
SearchTree Left;
SearchTree Right;
};
/* 相当于disponse */
SearchTree MakeEmpty(SearchTree T)
{
if(T != NULL)
{
MakeEmpty(T->Left);
MakeEmpty(T->Right);
free(T);
}
return NULL;
}
Position Find(ElementType X, SearchTree T)
{
if(T == NULL)
return NULL;
if(X < T->Element)
return Find(X, T->Left);
else if(X > T->Element)
return Find(X, T->Right);
else
return T;
}
/* 递归实现 */
Position FindMin(SearchTree T)
{
if(T == NULL)
return NULL;
else if(T->Left == NULL)
return T;
else
return FindMin(T->Left);
}
/* 非递归实现 */
Position FindMax(SearchTree T)
{
if(T != NULL)
while(T->Right != NULL)
T = T->Right;
return T;
}
SearchTree Insert(ElementType X, SearchTree T)
{
if(T == NULL)
{
/* Create and return a one-node tree */
T = malloc(sizeof(struct TreeNode));
if(T == NULL)
FatalError("Out of space!!!");
else
{
T->Element = X;
T->Left = T->Right = NULL;
}
}
else if(X < T->Element)
T->Left = Insert(X, T->Left);
else if(X > T->Element)
T->Right = Insert(X, T->Right);
/* Else X is in the tree already; we"ll do nothing */
return T;
}
/* 删除节点时须注意:始终保持节点在水平线上投影的有序性 */
SearchTree Delete(ElementType X, SearchTree T)
{
Position TmpCell;
if(T == NULL)
Error("Element not found");
else if(X < T->Element) /* Go left */
T->Left = Delete(X, T->Left);
else if(X > T->Element) /* Go right */
T->Right = Delete(X, T->Right);
else /* Found element to be deleted */
{
if(T->Left && T->Right) /* Two children */
{
/* Replace with smallest in right subtree */
TmpCell = FindMin(T->Right);
T->Element = TmpCell->Element;
T->Right = Delete( T->Element, T->Right );
}
else /* One or zero children */
{
TmpCell = T;
if(T->Left == NULL) /* Also handles 0 children */
T = T->Right;
else if(T->Right == NULL)
T = T->Left;
free( TmpCell );
}
}
return T;
}
ElementType Retrieve(Position P)
{
return P->Element;
}